目录
Wigner-Ville分布(可以简写成WVD)是广泛用于非平稳信号特征提取的一种时频分析方法,能够反应出信号能量密度的时频表示方式,它是以频率以及时间t为变量的,假设有一个信号x(t)那么其WVD可定义为:
但由于二次型变换先天的缺陷,在处理多分量信号时不可避免地会产生交叉项干扰。交叉项的出现极大地干扰了时频分布,同时也抑制了二次型时频分布的推广。伪Wigner-Ville分布(pseudo WVD, PWVD)是对基本的WVD进行加窗处理。加窗的结果使得WVD的完全非局部性变为局部化,且在某种程度上压缩了多分量信号的交叉项。
图1 原始信号
图2 WVD时频图
离散的PWVD定义为:
对PWVD得到的结果进行加窗操作后,可以得到:
式中:表示一个长度为2N-1的实窗函数,并且
。
假设用表示核函数,那么有
则PWVD变成
N的选择(通常是2N)对PWVD输出的运算量和时频分辨力影响很大。大的N值可以获得高的时频分辨力,从而产生更加平滑的结果。N的最大值受限于
图3 PWVD时频图
WVD和伪PWVD的值并不满足常规意义上的能量正值性,为了实现能量分布为正值性的特点,可通过把WVD与平滑函数进行卷积,从而得到平滑Wigner-Ville分布(SPWVD)。因为有窗函数在时间、频率两方面进行平滑,它具有较佳的消除交叉项效果。
图4 SPWVD时频图
WVD、PWVD、SPWVD仿真函数用法如下,相应函数可在时频工具箱中找到,并通过相应变换得到信号的时频分布图。
Wigner-Ville时频分布图
功能:计算时间序列的Wigner-Ville时频分布图,得到瞬时频率
格式:
[tfr, t, f] = tfrwv(x)
[tfr, t, f] = tfrwv(x, t)
[tfr, t, f] = tfrwv(x, t, n)
[tfr, t, f] = tfrwv(x, t, n, trace)
说明:
x—信号
t—时间(默认值为1:length(x))
n—频率数(默认值为length(x))
trace—如果非零,显示算法的进程(默认值为0)
tfr—时频分解(为复值),频率轴观察范围为-0.5~0.5
f—归一化频率
如
sig=fmlin(128,0.1,0.4);
tfrwv(sig);
伪Wigner-Ville时频分布图
功能:计算时间序列的伪Wigner-Ville时频分布图,得到瞬时频率
格式:
[tfr, t, f] = tfrpwv(x)
[tfr, t, f] = tfrpwv(x, t)
[tfr, t, f] = tfrpwv(x, t, n)
[tfr, t, f] = tfrpwv(x, t, n, trace)
说明:
x—信号
t—时间(默认值为1:length(x))
n—频率数(默认值为length(x))
trace—如果非零,显示算法的进程(默认值为0)
tfr—时频分解(为复值),频率轴观察范围为-0.5~0.5
f—归一化频率
如
sig=fmlin(128,0.1,0.4);
tfrpwv(sig);
平滑伪Wigner-Ville时频分布图
功能:计算时间序列的平滑伪Wigner-Ville时频分布图,得到瞬时频率
[tfr, t, f] = tfrspwv(x, t, n,G,H, trace)
x—信号
t—时间(缺省值为1:length(x))
n—频率数(缺省值为length(x))
G—时间平滑窗口,G(0)被强制为1(默认:Hamming(N/10))。
H—频率平滑窗口, H(0)被强制为1(默认:Hamming(N/4))。
trace—如果非零,显示算法的进程(默认值为0)
tfr—时频分解(为复值),频率轴观察范围为-0.5~0.5
f—归一化频率