基于WVD的特征提取

目录

Wigner-Ville时频分布图

伪Wigner-Ville时频分布图

平滑伪Wigner-Ville时频分布图

        Wigner-Ville分布(可以简写成WVD)是广泛用于非平稳信号特征提取的一种时频分析方法,能够反应出信号能量密度的时频表示方式,它是以频率以及时间t为变量的,假设有一个信号x(t)那么其WVD可定义为:

        但由于二次型变换先天的缺陷,在处理多分量信号时不可避免地会产生交叉项干扰。交叉项的出现极大地干扰了时频分布,同时也抑制了二次型时频分布的推广。伪Wigner-Ville分布(pseudo WVD, PWVD)是对基本的WVD进行加窗处理。加窗的结果使得WVD的完全非局部性变为局部化,且在某种程度上压缩了多分量信号的交叉项。

图1 原始信号

图2 WVD时频图

        离散的PWVD定义为:

         对PWVD得到的结果进行加窗操作后,可以得到:

式中:\omega (n)表示一个长度为2N-1的实窗函数,并且\omega (0)=1

        假设用f_{l}(n)表示核函数,那么有

        则PWVD变成

        N的选择(通常是2N)对PWVD输出的运算量和时频分辨力影响很大。大的N值可以获得高的时频分辨力,从而产生更加平滑的结果。N的最大值受限于

 图3 PWVD时频图

        WVD和伪PWVD的值并不满足常规意义上的能量正值性,为了实现能量分布为正值性的特点,可通过把WVD与平滑函数进行卷积,从而得到平滑Wigner-Ville分布(SPWVD)。因为有窗函数在时间、频率两方面进行平滑,它具有较佳的消除交叉项效果。

图4 SPWVD时频图

        WVD、PWVD、SPWVD仿真函数用法如下,相应函数可在时频工具箱中找到,并通过相应变换得到信号的时频分布图。

Wigner-Ville时频分布图

功能:计算时间序列的Wigner-Ville时频分布图,得到瞬时频率

格式:

[tfr, t, f] = tfrwv(x)

[tfr, t, f] = tfrwv(x, t)

[tfr, t, f] = tfrwv(x, t, n)

[tfr, t, f] = tfrwv(x, t, n, trace)

说明:

x—信号

t—时间(默认值为1length(x))

n—频率数(默认值为length(x))

trace—如果非零,显示算法的进程(默认值为0

tfr—时频分解(为复值),频率轴观察范围为-0.5~0.5

f—归一化频率

sig=fmlin(128,0.1,0.4);

tfrwv(sig);

Wigner-Ville时频分布图

功能:计算时间序列的伪Wigner-Ville时频分布图,得到瞬时频率

格式:

[tfr, t, f] = tfrpwv(x)

[tfr, t, f] = tfrpwv(x, t)

[tfr, t, f] = tfrpwv(x, t, n)

[tfr, t, f] = tfrpwv(x, t, n, trace)

说明:

x—信号

t—时间(默认值为1length(x))

n—频率数(默认值为length(x))

trace—如果非零,显示算法的进程(默认值为0

tfr—时频分解(为复值),频率轴观察范围为-0.5~0.5

f—归一化频率

sig=fmlin(128,0.1,0.4);

tfrpwv(sig);

平滑伪Wigner-Ville时频分布图

功能:计算时间序列的平滑伪Wigner-Ville时频分布图,得到瞬时频率

[tfr, t, f] = tfrspwv(x, t, n,G,H, trace)

x—信号

t—时间(缺省值为1length(x))

n—频率数(缺省值为length(x))

G—时间平滑窗口,G(0)被强制为1(默认:Hamming(N/10))

H—频率平滑窗口, H(0)被强制为1(默认:Hamming(N/4))

trace—如果非零,显示算法的进程(默认值为0

tfr—时频分解(为复值),频率轴观察范围为-0.5~0.5

f—归一化频率

时频分析工具箱中提供了计算各种线性时频表示和双线性时频分布的函数, 本帖主要列出时频分析工具箱函数简介,以号召大家就时频分析应用展开相关讨论。 一、信号产生函数: amexpo1s 单边指数幅值调制信号 amexpo2s 双边指数幅值调制信号 amgauss 高斯幅值调制信号 amrect 矩形幅值调制信号 amtriang 三角形幅值调制信号 fmconst 定频调制信号 fmhyp 双曲线频率调制信号 fmlin 线性频率调制信号 fmodany 任意频率调制信号 fmpar 抛物线频率调制信号 fmpower 幂指数频率调制信号 fmsin 正弦频率调制信号 gdpower 能量律群延迟信号 altes 时域Altes信号 anaask 幅值键移信号 anabpsk 二进制相位键移信号 anafsk 频率键移信号 anapulse 单位脉冲信号的解析投影 anaqpsk 四进制相位键移信号 anasing Lipscjitz 奇异性 anaste 单位阶跃信号的解析投影 atoms 基本高斯元的线性组合 dopnoise 复多普勒任意信号 doppler 复多普勒信号 klauder 时域Klauder小波 mexhat 时域墨西哥帽小波 二、噪声产生函数 noiseecg 解析复高斯噪声 noiseecu 解析复单位高斯噪声 tfrgabor Gabor表示 tfrstft 短时傅立叶变换 ifestar2 使用AR(2)模型的瞬时频率估计 instfreq 瞬时频率估计 sqrpdlay 群延迟估计 三、模糊函数 ambifunb 窄带模糊函数 ambifuwb 宽带模糊函数 四、Affine类双核线性时频处理函数 tfrbert 单式Bertrand分布 tfrdfla D-Flandrin分布 tfrscalo 尺度图 tfrspaw 平滑Affine类Wigner分布 tfrunter Unterberger分布 五、Cohen类双核线性时频处理函数 tfrbj Born-Jordan分布 tfrbud Butterworth分布 tfrcw Choi-Williams分布 tfrgrd 归一化的矩形分布 tfrmh Margenau-Hill分布 tfrmhs Margenau-Hill频谱分布 tfrmmce 谱图的最小平均互熵组合 tfrpage Page分布 tfrwv Wigner-Ville分布 tfrri Rihaczek分布 tfrridb 降低交叉项的分布(Bessel窗) tfrridbn 降低交叉项的分布(二项式窗) tfrridh 降低交叉项的分布(汉宁窗) tfrridt 降低交叉项的分布(三角窗) tfrsp 谱图分布 tfrspwv 平滑Wigner-Ville分布 tfrwv Wigner-Ville分布 tfrzam Zhao-Atlas-Marks分布 六、其他处理函数: friedman 瞬时频率密度 htl 图像直线检测中的Hough变换 margtfr 时频表示的能量 momftfr 时频表示的频率矩 momttfr 时频表示的时间矩 renyi Renyi信息度量 ridges 波峰提取 plotifl 绘制归一化的瞬时频率规律 tfrparam 返回用于显示时频表示的参数 tfrqview 时频表示的快速可视化 tfrsave 保存时频表示的参数 tfrview 时频表示的可视化
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值