Choi-Williams分布详解

Choi-Williams分布详解

引言

时频分析是信号处理中的重要领域,旨在同时描述信号在时间和频率域的特性。传统的傅里叶变换虽然能将信号从时域转换到频域,但无法同时提供时间和频率的局部信息。而Choi-Williams分布(Choi-Williams Distribution,简称CWD)作为Cohen类时频分布的一种重要形式,提供了一种有效的方法来分析非平稳信号的时频特性,同时抑制交叉项的影响。

时频分析基础

在深入了解Choi-Williams分布之前,我们需要先理解时频分析的基本概念。对于非平稳信号,其频率内容随时间变化,这使得仅使用傅里叶变换不足以完全描述信号的特性。时频分析的目标是创建一个联合时频分布,即时频平面上的二维函数,用于表示信号能量如何在时间和频率上分布。常见的时频分析方法包括短时傅里叶变换(STFT)、Wigner-Ville分布(WVD)以及各种Cohen类分布。在这些方法中,Wigner-Ville分布提供了良好的时频分辨率,但存在严重的交叉项干扰,而Choi-Williams分布则是为了解决这一问题而提出的。

Choi-Williams分布的定义与理论基础

Choi-Williams分布是Cohen类分布的一种特殊形式,通过引入指数核函数来抑制交叉项,同时保留自项的时频特性。从理论上讲,任何满足一定条件的Cohen类二次时频分布可以通过以下一般形式表示:

C x ( t , ω ) = 1 4 π 2 ∫ − ∞ ∞ ∫ − ∞ ∞ ∫ − ∞ ∞ e j θ ( u − t ) − j ω τ ⋅ ϕ ( θ , τ ) ⋅ x ( u + τ 2 ) ⋅ x ∗ ( u − τ 2 ) d θ d τ d u C_x(t, \omega) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j\theta(u-t) - j\omega\tau} \cdot \phi(\theta, \tau) \cdot x(u + \frac{\tau}{2}) \cdot x^*(u - \frac{\tau}{2}) d\theta d\tau du Cx(t,ω)=4π21ejθ(ut)τϕ(θ,τ)x(u+2τ)x(u2τ)dθdτdu

其中 ϕ ( θ , τ ) \phi(\theta, \tau) ϕ(θ,τ)是二维核函数,定义了分布的特性。通过引入模糊函数(ambiguity function),可以将上式重写为:

C x ( t , ω ) = 1 4 π 2 ∫ − ∞ ∞ ∫ − ∞ ∞ ϕ ( θ , τ ) ⋅ e j θ t − j ω τ ⋅ A x ( θ , τ ) d θ d τ C_x(t, \omega) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(\theta, \tau) \cdot e^{j\theta t - j\omega\tau} \cdot A_x(\theta, \tau) d\theta d\tau Cx(t,ω)=4π21ϕ(θ,τ)ejθtτAx(θ,τ)dθdτ

Choi-Williams分布则特别选择了指数形式的核函数,其完整定义如下:

C W D x ( t , ω ) = ∫ − ∞ ∞ ∫ − ∞ ∞ Φ ( θ , τ ) ⋅ e j θ t − j ω τ ⋅ A x ( θ , τ ) d θ d τ CWD_x(t, \omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(\theta, \tau) \cdot e^{j\theta t - j\omega\tau} \cdot A_x(\theta, \tau) d\theta d\tau CWDx(t,ω)=Φ(θ,τ)ejθtτAx(θ,τ)dθdτ

其中, A x ( θ , τ ) A_x(\theta, \tau) Ax(θ,τ)是信号 x ( t ) x(t) x(t)的模糊函数,定义为:

A x ( θ , τ ) = ∫ − ∞ ∞ x ( t + τ 2 ) ⋅ x ∗ ( t − τ 2 ) ⋅ e − j θ t d t A_x(\theta, \tau) = \int_{-\infty}^{\infty} x(t + \frac{\tau}{2}) \cdot x^*(t - \frac{\tau}{2}) \cdot e^{-j\theta t} dt Ax(θ,τ)=x(t+2τ)x(t2τ)ejθtdt

Φ ( θ , τ ) \Phi(\theta, \tau) Φ(θ,τ)是Choi-Williams核函数,定义为:

Φ ( θ , τ ) = e − θ 2 τ 2 σ \Phi(\theta, \tau) = e^{-\frac{\theta^2 \tau^2}{\sigma}} Φ(θ,τ)=eσθ2τ2

其中 σ \sigma σ是一个正的参数,用于控制核函数的形状和交叉项抑制的程度。

从另一个角度看,Choi-Williams分布也可以通过信号的Wigner-Ville分布与时频核的二维卷积来表示:

C W D x ( t , ω ) = W V D x ( t , ω ) ∗ ∗ G ( t , ω ) CWD_x(t, \omega) = WVD_x(t, \omega) \ast\ast G(t, \omega) CWDx(t,ω)=WVDx(t,ω)G(t,ω)

其中 W V D x ( t , ω ) WVD_x(t, \omega) WVDx(t,ω)是信号 x ( t ) x(t) x(t)的Wigner-Ville分布, G ( t , ω ) G(t, \omega) G(t,ω) Φ ( θ , τ ) \Phi(\theta, \tau) Φ(θ,τ)的二维傅里叶变换, ∗ ∗ \ast\ast 表示二维卷积。 G ( t , ω ) G(t, \omega) G(t,ω)可以通过以下公式计算:

G ( t , ω ) = 1 4 π 2 ∫ − ∞ ∞ ∫ − ∞ ∞ e j θ t − j ω τ ⋅ Φ ( θ , τ ) d θ d τ = 1 4 π 2 ∫ − ∞ ∞ ∫ − ∞ ∞ e j θ t − j ω τ ⋅ e − θ 2 τ 2 σ d θ d τ G(t, \omega) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j\theta t - j\omega\tau} \cdot \Phi(\theta, \tau) d\theta d\tau = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j\theta t - j\omega\tau} \cdot e^{-\frac{\theta^2 \tau^2}{\sigma}} d\theta d\tau G(t,ω)=4π21ejθtτΦ(θ,τ)dθdτ=4π21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值