【AI视野·今日Robot 机器人论文速览 第二十三期】Tue, 28 Sep 2021

AI视野·今日CS.Robotics 机器人学论文速览
Tue, 28 Sep 2021
Totally 48 papers
👉上期速览更多精彩请移步主页

在这里插入图片描述

Interesting:

📚SLAM系统发展综述,Robust SLAM Systems (from 英国曼大,intel中国实验室,北航)
在这里插入图片描述

在这里插入图片描述

benchmark link

***📚WiFi-Sensor-for-Robotics, 基于wif的机器人定位工具包。(from 哈佛 cmu)
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

code: https://github.com/Harvard-REACT/WSR-Toolbox

📚月球上的采矿小车, (from 阿德莱德大学)
在这里插入图片描述
NASA Space Robotics Challeng


Daily Robotics Papers

A 3-DOF Robotic Platform for the Rehabilitation of Reaction Time and Balance Skills of MS Patients
Authors Tugce Ersoy, Elif Hocaoglu
我们介绍了用于治疗 MS 患者平衡障碍的 3 DOF 机器人平台的设计、实施和实验评估。机器人平台的设计允许脚踝基于空间中的拟人自由度进行角运动。话虽如此,这样的机器人通过在三个方向上改变平台的角度位置来迫使患者保持平衡。任务的难度级别是根据从负责患者对意外扰动的反应时间的上下平台收集的数据确定的。上平台即时提供每只脚的压力分布,而下平台同时共享患者的重心。在这项研究中,成功​​实现了 3 DOF 并联机械手的运动学和动力学分析和仿真。概念设计验证的控制是通过PID控制进行的。

G-VOM: A GPU Accelerated Voxel Off-Road Mapping System
Authors Timothy Overbye, Srikanth Saripalli
我们提出了一个用于越野路径规划和导航的局部 3D 体素映射框架。我们的方法提供硬和软正障碍检测、负障碍检测、坡度估计和粗糙度估计。通过使用 3D 数组查找表数据结构并利用 GPU,它可以提供在线性能。然后,我们演示了该系统在三辆车上工作,即 Clearpath Robotics Warthog、Moose 和 Polaris Ranger,并与一组预先记录的航点进行比较。这是在自主操作中以 4.5 毫秒完成,在手动操作中以 12 毫秒完成,地图更新率为 10 赫兹。

Precision fruit tree pruning using a learned hybrid vision/interaction controller
Authors Alexander You, Hannah Kolano, Nidhi Parayil, Cindy Grimm, Joseph R. Davidson
机器人修剪树木需要高度精确的机械手控制,以便以正确的角度将切割工具与所需的修剪点准确对齐。同时,机器人必须避免对环境的刚性部分(例如树木、支柱和电线)施加过大的力。在本文中,我们提出了一种混合控制系统,该系统使用基于学习视觉的控制器来初始将刀具与所需的修剪点对齐,获取环境图像并输出控制动作。该控制器完全在模拟中训练,但可以通过神经网络轻松转移到真实的树上,该网络将原始图像转换为简化的分段表示。一旦建立接触,系统就会将控制权移交给一个交互控制器,该控制器将刀具枢轴点引导到分支,同时最小化交互力。

Robust SLAM Systems: Are We There Yet?
Authors Mihai Bujanca, Xuesong Shi, Matthew Spear, Pengpeng Zhao, Barry Lennox, Mikel Lujan
过去十年的进步带来了 SLAM 系统准确性和速度的显着改进,拓宽了它们的映射能力。

Dynamic Allocation of Visual Attention for Vision-based Autonomous Navigation under Data Rate Constraints
Authors Ali Reza Pedram, Riku Funada, Takashi Tanaka
本文考虑了任务相关的自上而下注意力分配问题,用于使用已知地标的基于视觉的自主导航。与将地标选择表述为组合优化问题的现有范式不同,我们将其建模为资源分配问题,其中决策者 DM 被授予额外的自由来控制对每个地标的关注程度。 DM 可用的总资源用输入信息流的容量限制表示,它由从环境状态到 DM 观察的定向信息量化。我们考虑线性二次高斯 LQG 机制中这种受控传感方案的后退水平实现。凸凹过程应用于每个时间步长,如果使用乘法器的交替方向方法 ADMM,则其时间复杂度在水平长度上呈线性。

Non-prehensile Planar Manipulation via Trajectory Optimization with Complementarity Constraints
Authors Jo o Moura, Theodoros Stouraitis, Sethu Vijayakumar
接触适应是操纵物体时的一项基本能力。非抓握操作的两种关键接触方式是粘着和滑动。本文提出了一种轨迹优化 TO 方法,该方法制定为具有互补约束 MPCC 的数学程序,它能够在这两种模式之间切换。我们表明该公式可适用于平面操作任务的规划和模型预测控制 MPC。我们在数值上将我们的规划器与混合整数替代方案进行了比较,表明 MPCC 平面器收敛速度更快,在时间范围方面的扩展性更好,并且可以处理有障碍物的环境 ii 我们的控制器与最先进的混合整数方法相比,表明MPCC 控制器实现了更好的跟踪和更一致的计算时间。

Trajectory-based Reinforcement Learning of Non-prehensile Manipulation Skills for Semi-Autonomous Teleoperation
Authors Sangbeom Park, Yoonbyung Chai, Sunghyun Park, Jeongeun Park, Kyungjae Lee, Sungjoon Choi
在本文中,我们提出了一个使用 RGB D 传感器的拾放任务的半自主遥操作框架。特别地,我们假设目标对象位于杂乱的环境中,在该环境中,抓握和非抓握操作结合起来以实现有效的遥操作。基于轨迹的强化学习用于学习非抓握操作以重新排列对象以实现直接抓取。从杂乱环境的深度图像和目标物体的位置,学习到的策略可以为人类操作员提供多种非抓握操作的选择。我们为重排任务精心设计了一个奖励函数,其中在模拟环境中训练策略。

Validating human driver models for interaction-aware automated vehicle controllers: A human factors approach
Authors Olger Siebinga, Arkady Zgonnikov, David Abbink
自动驾驶汽车面临的一个主要挑战是与其他交通参与者安全顺畅地互动。处理此类交通交互的一种有前途的方法是为自动驾驶汽车配备交互感知控制器 IAC。这些控制器基于驾驶员模型预测周围的人类驾驶员将如何响应自动驾驶汽车的动作。然而,IAC 中使用的驱动程序模型的预测有效性很少得到验证,这可能会限制 IAC 在演示它们的简单模拟环境之外的交互能力。在本文中,我们认为除了评估 IAC 的交互能力外,还应根据自然的人类驾驶行为验证其底层驱动程序模型。我们为此验证提出了一个工作流程,其中包括基于场景的数据提取和基于人为因素文献的两阶段战术操作评估程序。我们在从现有 IAC 复制的基于逆向强化学习的驱动程序模型的案例研究中演示了此工作流程。该模型仅在 40 个预测中显示了正确的战术行为。该模型的操作行为与观察到的人类行为不一致。案例研究表明,有原则的评估工作流程是有用的,也是必要的。

Learning of Parameters in Behavior Trees for Movement Skills</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值