我一定能学会卷积神经网络(1)---利用pytorch构建卷积神经网络

卷积神经网络学习记录(1)--------利用pytorch构建卷积神经网络

目录

1.卷积神经网络

1.1隐含层介绍

1.1.1卷积层

1.1.2池化层

1.1.3全连接层

1.2其他结构

1.2.1BN层

1.2.2激活函数

1.2.3防止过拟合

1.3 练习

1.3.1参考文章

1.3.2全部代码


1.卷积神经网络

     卷积神经网络主要结构为:卷积层,隐含层,输出层,其中隐含层可以分为三个部分,分别是卷积层(对输入数据进行特征提取)、池化层(特征选择和信息过滤)、全连接层(等价于传统前馈神经网络中的隐含层)。

1.1隐含层介绍

1.1.1卷积层

      先来看pytorch中构建卷积层的重要函数

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

其中:

  • in_channels:输入通道数(深度)
  • out_channels:输出通道数(深度)
  • kernel_size:滤波器(卷积核)大小,宽和高相等的卷积核可以用一个数字表示,例如:kernel_size=2;否则用不同数字表示,例如 kernel_size=(4,9)
  • stride:表示滤波器滑动的步长
  • padding:是否进行零填充,padding=0 表示四周不进行零填充,padding=1 表示四周进行1个像素点的零填充
  • bias:默认为 True,表示使用偏置
  • groups:groups=1 表示所有输入输出是相关联的;groups=n 表示输入输出通道数(深度)被分割为 n 份,并分别对应,且需要被 groups 整除(这里不太明白)
  • dilation:卷积对输入的空间间隔,默认为 True

1.1.2池化层

     池化最直观的作用便是降维,最常见的池化方式有最大值池化和平均值池化

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True)

其中:

  • kernel_size、stride、padding、dilation与卷积层定义一致
  • return_indices:表示是否返回最大值的下标,默认为 False
  • ceil_mode:默认为 False,即不使用方格代替层结构
  • count_include_pad:默认为 True,表示包含零填充

1.1.3全连接层

torch.nn.Linear(in_features, out_features, bias=True)

其中:

  • in_features:上层网络神经元的个数
  • out_features:该网络层神经元的个数
  • bias:网络层是否有偏置,默认为True,且维度为[out_features]

1.2其他结构

1.2.1BN层

批标准化层可以加快收敛速度

torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True)

其中:

  • num_features:输入通道数(深度)
  • eps:为数值稳定性而添加到分母的值, 默认值为 1e-5
  • momentum:用于 running_mean 和 running_var 计算的值;对于累积移动平均值(即简单平均值),可以设置为“无”。 默认值为 0.1
  • affine:当设置为 True 时,该模块具有可学习的仿射参数。 默认为 True
  • track_running_stats:当设置为 True 时,该模块跟踪运行的均值和方差,当设置为 False 时,该模块不跟踪这样的统计数据,并且总是在训练和评估模式。 默认为 True

1.2.2激活函数

import torch.nn.functional as F

F.relu()
F.sigmoid()
F.tanh()
F.softplus()

1.2.3防止过拟合

torch.nn.Dropout(p=0.5, inplace=False)

其中:

  • p:将元素置0的概率。默认值:0.5
  • in-place:若设置为True,会在原地执行操作。默认值:False

1.3 练习

1.3.1参考文章

1.3.2全部代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
import cv2
#***************************获取训练集和测试集*********************************
"""
# 下载训练集
train_dataset = datasets.MNIST(root='./num/',
                               train=True,
                               transform=transforms.ToTensor(),
                               download=True)
# 下载测试集
test_dataset = datasets.MNIST(root='./num/',
                              train=False,
                              transform=transforms.ToTensor(),
                              download=True)
"""
#下载训练集
train_dataset = datasets.MNIST(root='./num/',
                               train=True   ,
                               download=True,
                               transform=torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(
        (0.1307,), (0.3081,))
]))
#下载数据集
test_dataset = datasets.MNIST(root='./num/',
                              train=False,
                              download=True,
                              transform=torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(
        (0.1307,), (0.3081,))
]))

#***************************数据装载和预览***********************************
# dataset 参数用于指定我们载入的数据集名称
# batch_size参数设置了每个包中的图片数据个数
# 在装载的过程会将数据随机打乱顺序并进打包
batch_size = 64
#建立一个数据迭代器
# 装载训练集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)    # shuffle=True随机打乱数据进行打包
# 装载测试集
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True)
# 实现单张图片可视化
images, labels = next(iter(train_loader))  #使用iter和next来获取一个批次的图片数据和其对应的图片标签, iter为迭代器,next遍历
img = torchvision.utils.make_grid(images)  #make_grid 类方法将一个批次的图片构造成网格模式
#格式转换 img的格式(channels,imagesize,imagesize)
#plt.imshow的输入格式(imagesize,imagesize,channels)
#先把torch.FloatTensor 转换为numpy
img = img.numpy().transpose(1, 2, 0) #transpose为交换数据维度
std = [0.5, 0.5, 0.5]   #std:各通道的标准差
mean = [0.5, 0.5, 0.5]  #mean:各通道的均值
img = img * std + mean  #灰度拉伸
print(labels)
cv2.imshow('win', img)
key_pressed = cv2.waitKey(0)

#**************************搭建卷积神经网络***************************
# 卷积层使用 torch.nn.Conv2d
# 激活层使用 torch.nn.ReLU
# 池化层使用 torch.nn.MaxPool2d
# 全连接层使用 torch.nn.Linear

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Sequential(nn.Conv2d(1, 6, 3, 1, 2), nn.ReLU(),
                                   nn.MaxPool2d(2, 2))

        self.conv2 = nn.Sequential(nn.Conv2d(6, 16, 5), nn.ReLU(),
                                   nn.MaxPool2d(2, 2))

        self.fc1 = nn.Sequential(nn.Linear(16 * 5 * 5, 120),
                                 nn.BatchNorm1d(120), nn.ReLU())

        self.fc2 = nn.Sequential(
            nn.Linear(120, 84),
            nn.BatchNorm1d(84),
            nn.ReLU(),
            nn.Linear(84, 10))
        	# 最后的结果一定要变为 10,因为数字的选项是 0 ~ 9


    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size()[0], -1)
        x = self.fc1(x)
        x = self.fc2(x)
        return x

#****************************训练模型***************************************
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
LR = 0.001   #学习率

net = LeNet().to(device)
# 损失函数使用交叉熵,关于损失函数:loss 类型为torch.Tensor是一个可求导的tensor; loss.item类型为float是python类型的常数值.
criterion = nn.CrossEntropyLoss()
# 优化函数使用 Adam 自适应优化算法
optimizer = optim.Adam(
    net.parameters(),
    lr=LR,
)
epoch = 1
if __name__ == '__main__':
    for epoch in range(epoch):
        sum_loss = 0.0
        for i, data in enumerate(train_loader):
            inputs, labels = data
            inputs, labels = Variable(inputs).to(device), Variable(labels).to(device)
            optimizer.zero_grad()  #将梯度归零
            outputs = net(inputs)  #将数据传入网络进行前向运算
            loss = criterion(outputs, labels)  #得到损失函数
            loss.backward()  #反向传播
            optimizer.step()  #通过梯度做一步参数更新

            # print(loss)
            sum_loss += loss.item()
            if i % 100 == 99:
                print('[%d,%d] loss:%.03f' %
                      (epoch + 1, i + 1, sum_loss / 100))
                sum_loss = 0.0

#****************************测试模型**************************************
net.eval()  #将模型变换为测试模式
correct = 0
total = 0
for data_test in test_loader:
    images, labels = data_test  #获取训练样本
    #images, labels = Variable(images).cuda(), Variable(labels).cuda()
    images, labels = Variable(images).to(device), Variable(labels).to(device)  #设为计算节点
    output_test = net(images) #将图像放入模型进行计算
    _, predicted = torch.max(output_test, 1) #返回一个tensor中的最大值
    total += labels.size(0)
    correct += (predicted == labels).sum()   #预测正确的个数
print("correct1: ", correct)
print("Test acc: {0}".format(correct.item() /
                                 len(test_dataset)))


  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值