经典关系抽取(一)CasRel(层叠式指针标注)在DuIE2.0数据集上的应用

经典关系抽取(一)CasRel(层叠式指针标注)在DuIE2.0数据集上的应用

  • 关系抽取(Relation Extraction)就是从一段文本中抽取出(主体,关系,客体)这样的三元组,用英文表示是 (subject, relation, object) 。
  • 从关系抽取的定义可以看出,关系抽取主要要做两件事:
    • 识别文本中的subject和object(实体识别)
    • 判断这两个实体属于哪种关系(关系分类)
  • 在解决关系抽取这个任务时,按照模型的结构分为两种,一种是 Pipeline,另一种是 Joint Model。
    • 如果将关系抽取的两个任务分离,先进行实体识别,再进行关系分类,就是 Pipeline 模型。一般认为Pipeline会出现误差传播的情况,也就是实体识别的误差,会影响后面的关系分类任务,但关系分类任务,又无法对实体识别造成的误差进行修正。因为两个任务是独立的,关系分类的loss,无法反向传播给实体识别阶段。
    • 为了优化 Pipeline 存在的问题,就有了 Joint Model(多任务学习的联合抽取模型),本质上还是 Pipeline 的编码方式,也就是先解码出实体,再去解码关系。但跟 Pipeline 不同的是,Joint Model 只计算一次损失,所以loss反向传播,也会对实体识别的误差进行修正

1 实体关系的joint抽取模型简介

  • 我们已经知道pipeline方式主要存在下面几个问题:
    • pipeline方式存在误差积累,还会增加计算复杂度(实体冗余计算)
    • pipeline方式存在交互缺失,忽略实体和关系两个任务之间的内在联系
  • 因此现在关系抽取大都采取joint方式,实体关系的joint抽取模型可分为下面2大类。

1.1 多任务学习

多任务学习(共享参数的联合抽取模型)。多任务学习机制中,实体和关系共享同一个网络编码,但本质上仍然是采取pipeline的解码方式(故仍然存在误差传播问题)。近年来的大部分joint都采取这种共享参数的模式,集中在魔改各种Tag框架和解码方式。下面是几种典型网络结构:

1.2 结构化预测

结构化预测(联合解码的联合抽取模型)

2 层叠式指针标注CasRel简介

2.1 背景介绍

  • 以往的方法大多将关系建模为实体対上的一个离散的标签:

    • 首先通过命名实体识别(NER)确定出句子中所有的实体
    • 然后学习一个关系分类器在所有的实体对上做RC,最终得到我们所需的关系三元组
  • 但是这样会出现下面的问题:

    • 类别分布不平衡。多数提取出来的实体对之间无关系
    • 同一实体参与多个有效关系(如下图的重叠三元组),分类器可能会混淆。如果没有足够的训练样例,分类器难以区分(有的多标签分类难以工作就是因为这个)。

    在这里插入图片描述

  • CasRel框架最核心思想:把关系(Relation)建模为将头实体(Subject)映射到尾实体(Object)的函数,而不是将其视为实体对上的标签。

我们不学习关系分类器: f ( s u b j e c t , o b j e c t ) − > r 而是学习关系特定的尾实体 ( o b j e c t ) 标注器 : f r ( s u b j e c t ) − > o b j e c t 我们不学习关系分类器:f(subject,object)->r\\ 而是学习关系特定的尾实体(object)标注器:f_r(subject)->object 我们不学习关系分类器:f(subject,object)>r而是学习关系特定的尾实体(object)标注器:fr(subject)>object

  • 每个尾实体标注器都将在给定关系和头实体的条件下识别出所有可能的尾实体

  • CASREL的做法:

    • 编码器:Bert
    • 序列标注:抽出头实体
    • 关系特定的尾实体标注:对每一个头实体,针对其可能的关系抽取其尾实体,如果不存在尾实体,就无此关系。

2.2 CasRel的网络结构

  • 关系三元组抽取问题被分解为如下的两步过程:

    • 首先,我们确定出句子中所有可能的头实体;
      • 在下图中,我们识别到三个头实体分别为:[Jackie R. Brown]、[Washington]、[United States Of America]
    • 然后针对每个头实体,我们使用关系特定的标注器来同时识别出所有可能的关系和对应的尾实体。
      • 在下图中,头实体[Jackie R. Brown]在特定关系[Birth_place]中识别到了2个尾实体[Washington]和[United States Of America],那么三元组为:(Jackie R. Brown, Birth_place, Washington)、(Jackie R. Brown, Birth_place, United States Of America)
      • 头实体[Washington]在特定关系[Capital_of]中识别到了1个尾实体[United States Of America],那么三元组为:(Washington, Capital_of, United States Of America)
      • 头实体[United States Of America]在所有的关系中都没有识别尾实体,因此没有三元组。
  • 如下图所示,CASREL模型由三个模块构成:

    • BERT编码层模块(BERT Encoder)。

      • 这个是固定操作,就是将token经过Bert后转换为词向量。
    • 主体标记模块(Subject Tagger)。

      • 采用两个相同的二元分类器分别检测主体的起始位置和结束位置。当置信度大于阈值标记为1,小于阈值标记为0。

      在这里插入图片描述
      在这里插入图片描述

      • 主体标记模块损失函数为BCELoss。
    • 特定关系下客体的标记模块(Relation-Specific Object Taggers)。

      • 结构和subject tagger相同,每个关系都有一个object tagger。

      在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.3 模型局限性

  • 因为实体就近匹配,无法解决实体嵌套的场景,
"""
假设有下面的嵌套实体(叶圣陶和叶圣陶散文选集):
       叶 圣  陶 散 文  选  集
start  1  0  0  0  0   0  0
end    0  0  1  0  0   0  1
"""
    ......
    # 1、先筛选出大于阈值的实体头和实体尾的位置
	start = torch.where(subject_preds[0, :, 0] > 0.6)[0]
    end = torch.where(subject_preds[0, :, 1] > 0.5)[0]
    # 2、主体抽取的实现代码
    subjects = []
    for i in start:
        j = end[end >= i]
        if len(j) > 0:
            j = j[0]
            subjects.append((i.item(), j.item()))
     # 依据代码的逻辑可以看到只能提取到【叶圣陶】实体        
  • 该模型不适用于长段落、篇章级别信息抽取,因为bert位置编码512位,关系无法跨句子;

3 CasRel在DuIE2.0数据集上的应用

  • 这里我们使用一款简洁的训练框架:bert4torch
# bert4torch框架作者知乎:https://www.zhihu.com/people/li-bo-53-72/posts
# https://github.com/Tongjilibo/bert4torch
pip install bert4torch==0.5.0

3.1 加载数据集

我们先来看一条训练数据:

{
    "text": "《邪少兵王》是冰火未央写的网络小说连载于旗峰天下",
    "spo_list": [
        {
            "predicate": "作者", // 关系
            "object_type": {
                "@value": "人物"
            },
            "subject_type": "图书作品",
            "object": {
                "@value": "冰火未央" // 客体
            },
            "subject": "邪少兵王"    // 主体
        }
    ]
}

我们需要将上面的单条数据转换为下面形式:

// 我们需要将上面的单条数据转换为
//{'text': text, 'spo_list': [(s, p, o)]}
{
	'text': "《邪少兵王》是冰火未央写的网络小说连载于旗峰天下", 
	'spo_list': [('邪少兵王', '作者', '冰火未央')]
}
// 然后将text进行编码,获取token_ids和segment_ids,还需要获取主体及客体在token_ids中的位置
{
    'text': '《邪少兵王》是冰火未央写的网络小说连载于旗峰天下', 
    'spo_list': [('邪少兵王', '作者', '冰火未央')], 
    'token_ids': [101, 517, 6932, 2208, 1070, 4374, 518, 3221, 1102, 4125, 3313, 1925, 1091, 4638, 5381, 5317, 2207, 6432, 6825, 6770, 754, 3186, 2292, 1921, 678, 102],
    'segment_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
    // 主体在token_ids中的位置(2, 5),左右都闭
    // 客体在token_ids中的位置(8, 11)以及关系的id=7
    'spoes': {(2, 5): [(8, 11, 7)]}
}

具体代码实现如下,在调试时候我们可以选取一部分数据进行测试:

#! -*- coding:utf-8 -*-
import json
import platform

import numpy as np
from bert4torch.layers import LayerNorm
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, ListDataset
from bert4torch.callbacks import Callback
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader, Dataset
import torch.optim as optim
import torch.nn as nn

maxlen = 128
batch_size = 64


# 获取当前操作系统的名称
os_name = platform.system()

# 设置模型路径及数据集路径
if os_name == "Windows":
    # 这里使用哈工大开源的chinese-macbert-base
    config_path = r'D:\python\models\berts\chinese-macbert-base\config.json'
    checkpoint_path = r'D:\python\models\berts\chinese-macbert-base\pytorch_model.bin'
    dict_path = r'D:\python\models\berts\chinese-macbert-base\vocab.txt'
    # 数据集使用百度开源的DuIE2.0
    train_data_path = r'D:\python\datas\nlp_ner\DuIE2.0\duie_train.json'
    dev_data_path = r'D:\python\datas\nlp_ner\DuIE2.0\duie_dev.json'
    schema_path = r'D:\python\datas\nlp_ner\DuIE2.0\duie_schema.json'
    print("当前执行环境是 Windows...")
elif os_name == "Linux":
    config_path = r'/root/autodl-fs/models/chinese-macbert-base/config.json'
    checkpoint_path = r'/root/autodl-fs/models/chinese-macbert-base/pytorch_model.bin'
    dict_path = r'/root/autodl-fs/models/chinese-macbert-base/vocab.txt'

    train_data_path = r'/root/autodl-fs/data/nlp_ai/nlp_ner/duie2/duie_train.json'
    dev_data_path = r'/root/autodl-fs/data/nlp_ai/nlp_ner/duie2/duie_dev.json'
    schema_path = r'/root/autodl-fs/data/nlp_ai/nlp_ner/duie2/duie_schema.json'
    print("当前执行环境是 Linux...")
else:
    raise ValueError("当前执行环境不是 Windows 也不是 Linux")



device = 'cuda' if torch.cuda.is_available() else 'cpu'

# 加载标签字典
predicate2id, id2predicate = {}, {}

# with open(r'D:\python\datas\nlp_ner\knowledge_extraction\all_50_schemas', encoding='utf-8') as f:
with open(schema_path, encoding='utf-8') as f:
    for l in f:
        l = json.loads(l)
        if l['predicate'] not in predicate2id:
            id2predicate[len(predicate2id)] = l['predicate']
            predicate2id[l['predicate']] = len(predicate2id)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

# 解析样本
def get_spoes(text, spo_list):
    '''单独抽出来,这样读取数据时候,可以根据spoes来选择跳过
    '''
    def search(pattern, sequence):
        """从sequence中寻找子串pattern
        如果找到,返回第一个下标;否则返回-1。
        """
        n = len(pattern)
        for i in range(len(sequence)):
            if sequence[i:i + n] == pattern:
                return i
        return -1

    token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
    # 整理三元组 {s: [(o, p)]}
    spoes = {}
    for s, p, o in spo_list:
        s = tokenizer.encode(s)[0][1:-1]
        p = predicate2id[p]
        o = tokenizer.encode(o)[0][1:-1]
        s_idx = search(s, token_ids)
        o_idx = search(o, token_ids)
        if s_idx != -1 and o_idx != -1:
            s = (s_idx, s_idx + len(s) - 1)
            o = (o_idx, o_idx + len(o) - 1, p)
            if s not in spoes:
                spoes[s] = []
            spoes[s].append(o)
    return token_ids, segment_ids, spoes

# 加载数据集
class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        """加载数据
        单条格式:{'text': text, 'spo_list': [(s, p, o)]}
        """
        D = []
        with open(filename, encoding='utf-8') as f:
            for l in tqdm(f):
                l = json.loads(l)
                labels = [(spo['subject'], spo['predicate'], spo['object']['@value']) for spo in l['spo_list']]
                token_ids, segment_ids, spoes = get_spoes(l['text'], labels)
                if spoes:
                    D.append({'text': l['text'], 'spo_list': labels, 'token_ids': token_ids, 
                              'segment_ids': segment_ids, 'spoes': spoes})
                # 这里可以选一部分数据进行测试    
                # if len(D) > 100:
                #     break
        print(f'loaded data nums = {len(D)} from {filename}')
        return D

3.2 构建DataLoader

  • 利用collate_fn方法构建subject标签、object标签,并进行填充
  • 注意:这里是随机选一个subject
def collate_fn(batch):
    batch_token_ids, batch_segment_ids = [], []
    batch_subject_labels, batch_subject_ids, batch_object_labels = [], [], []
    for d in batch:
        token_ids, segment_ids, spoes = d['token_ids'], d['segment_ids'], d['spoes']
        if spoes:
            # 1、subject标签
            subject_labels = np.zeros((len(token_ids), 2))
            for s in spoes:
                subject_labels[s[0], 0] = 1  # subject首
                subject_labels[s[1], 1] = 1  # subject尾
            # 随机选一个subject(这里没有实现错误!这就是想要的效果!!)
            start, end = np.array(list(spoes.keys())).T
            start = np.random.choice(start)
            end = np.random.choice(end[end >= start])
            subject_ids = (start, end)
            # 2、对应的object标签
            # 后面sequence_padding方法中是对第1维数据进行填充,因此需要把len(token_ids)放在第1维
            object_labels = np.zeros((len(token_ids), len(predicate2id), 2))
            for o in spoes.get(subject_ids, []):
                object_labels[o[0], o[2], 0] = 1
                object_labels[o[1], o[2], 1] = 1
            # 构建batch
            batch_token_ids.append(token_ids)
            batch_segment_ids.append(segment_ids)
            batch_subject_labels.append(subject_labels)
            batch_subject_ids.append(subject_ids)
            batch_object_labels.append(object_labels)
    # 填充
    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
    batch_subject_labels = torch.tensor(sequence_padding(batch_subject_labels), dtype=torch.float, device=device)
    batch_subject_ids = torch.tensor(batch_subject_ids, dtype=torch.long, device=device)
    batch_object_labels = torch.tensor(sequence_padding(batch_object_labels), dtype=torch.float, device=device)
    batch_attention_mask = (batch_token_ids != tokenizer._token_pad_id)
    return [batch_token_ids, batch_segment_ids, batch_subject_ids], [batch_subject_labels, batch_object_labels, batch_attention_mask]

# 构造训练集的DataLoader
train_dataset = MyDataset(train_data_path)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)

# 构造测试集的DataLoader
valid_dataset = MyDataset(dev_data_path)
valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate_fn)

3.3 定义CasRel模型

# bert4torch/layers/core.py
class LayerNorm(nn.Module):
    def __init__(self, hidden_size:int, eps:float=1e-12, conditional_size:Union[bool, int]=False, weight:bool=True, bias:bool=True, 
                 norm_mode:Literal['normal', 'torch_buildin', 'rmsnorm']='normal', **kwargs):
        """ layernorm层,自行实现是为了兼容conditianal layernorm,使得可以做条件文本生成、条件分类等任务

            :param hidden_size: int, layernorm的神经元个数
            :param eps: float
            :param conditional_size: int, condition layernorm的神经元个数; 详情:https://spaces.ac.cn/archives/7124
            :param weight: bool, 是否包含权重
            :param bias: bool, 是否包含偏置
            :param norm_mode: str, `normal`, `rmsnorm`, `torch_buildin`
        """
        ......
        # 条件layernorm, 用于条件文本生成
        if conditional_size:
            # 这里采用全零初始化, 目的是在初始状态不干扰原来的预训练权重
            self.dense1 = nn.Linear(conditional_size, hidden_size, bias=False)
            self.dense1.weight.data.uniform_(0, 0)
            self.dense2 = nn.Linear(conditional_size, hidden_size, bias=False)
            self.dense2.weight.data.uniform_(0, 0)

    def forward(self, hidden_states:torch.FloatTensor, cond:Optional[torch.Tensor]=None):
        ......
        # 自行实现的LayerNorm
        else:
            u = hidden_states.mean(-1, keepdim=True)
            s = (hidden_states - u).pow(2).mean(-1, keepdim=True)
            o = (hidden_states - u) / torch.sqrt(s + self.eps)

        if not hasattr(self, 'weight'):
            self.weight = 1

        if self.conditional_size and (cond is not None):
            # 会进入此分支
            for _ in range(len(hidden_states.shape) - len(cond.shape)):
                # cond就是将subject的start和end向量concat一起
                # [bs, hidden_size*2] -> [bs, 1, hidden_size*2]
                cond = cond.unsqueeze(dim=1)
            # 通过下面代码将subject融入到object的预测中
            # o是经过原始LayerNorm后的值
            # (self.weight + self.dense1(cond))相当于gamma
            # self.dense2(cond)相当于beta
            output = (self.weight + self.dense1(cond)) * o + self.dense2(cond)
        else:
            output = self.weight * o

        if hasattr(self, 'bias') and (self.bias is not None):
            output += self.bias
        return output.type_as(hidden_states)
# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self) -> None:
        super().__init__()
        self.bert = build_transformer_model(config_path, checkpoint_path)
        self.linear1 = nn.Linear(768, 2)
        """
        苏神博客:https://spaces.ac.cn/archives/7124
        在Bert等Transformer模型中,主要的Normalization方法是Layer Normalization
            ,所以很自然就能想到将对应的β和γ变成输入条件的函数,来控制Transformer模型的生成行为
            ,这就是Conditional Layer Normalization的线索思路。
        这里通过Conditional Layer Normalization将subject融入到object的预测中    
        """
        self.condLayerNorm = LayerNorm(hidden_size=768, conditional_size=768*2)
        self.linear2 = nn.Linear(768, len(predicate2id)*2)

    @staticmethod
    def extract_subject(inputs):
        """
        根据subject_ids从output中取出subject的向量表征
        :param inputs: [seq_output, subject_ids]
                seq_output是模型预测的每个token属于start和end概率结果,shape=(bs, seq_len, hidden_size)
                subject_ids是主体的id,shape=(bs, 2)
        :return: subject的向量表征 shape = (bs, hidden_size * 2)
        """
        output, subject_ids = inputs
        # torch.gather函数:https://blog.csdn.net/qq_44665283/article/details/134088676
        # 1、取出主体start和end向量的向量表征
        # start shape = (bs, 1, hidden_size)
        start = torch.gather(output, dim=1, index=subject_ids[:, :1].unsqueeze(2).expand(-1, -1, output.shape[-1]))
        # end shape = (bs, 1, hidden_size)
        end = torch.gather(output, dim=1, index=subject_ids[:, 1:].unsqueeze(2).expand(-1, -1, output.shape[-1]))
        # 2、concat
        subject = torch.cat([start, end], 2)
        return subject[:, 0]

    def forward(self, *inputs):
        """
        :param inputs: collate_fn函数会将batch数据集组装成train_X, train_y
                        这里的inputs就是train_X,即[batch_token_ids, batch_segment_ids, batch_subject_ids]
        :return: 主体和客体的预测值
        """
        token_ids, segment_ids, subject_ids = inputs
        # 预测subject
        seq_output = self.bert(token_ids, segment_ids)  # [bs, seq_len, hidden_size]
        subject_preds = (torch.sigmoid(self.linear1(seq_output)))**2  # [btz, seq_len, 2]

        # 传入subject,预测object
        subject = self.extract_subject([seq_output, subject_ids])
        # Note: 通过Conditional Layer Normalization将subject融入到object的预测中
        # 理论上应该用LayerNorm前的,但是这样只能返回各个block顶层输出,这里和keras实现不一致
        output = self.condLayerNorm(seq_output, subject)
        # 进行客体的分类预测
        output = (torch.sigmoid(self.linear2(output)))**4
        # (bs, seq_len, len(predicate2id)*2) -> (bs, seq_len, len(predicate2id), 2)
        object_preds = output.reshape(*output.shape[:2], len(predicate2id), 2)

        return [subject_preds, object_preds]
    
    def predict_subject(self, inputs):
        """
        主体预测
        :param inputs: [batch_token_ids, batch_segment_ids, batch_subject_ids]
        :return: [seq_output, subject_preds]
                 每个token的向量表示:seq_output shape = [bs, seq_len, hidden_size]
                 每个token属于主体的start和end的概率:subject_preds shape = [bs, seq_len, 2]
        """
        self.eval()
        with torch.no_grad():
            seq_output = self.bert(inputs[:2])  # [bs, seq_len, hidden_size]
            subject_preds = (torch.sigmoid(self.linear1(seq_output)))**2  # [bs, seq_len, 2]
        return [seq_output, subject_preds]
    
    def predict_object(self, inputs):
        """
        客体预测
        :param inputs: 主体预测的输出[seq_output, subject_preds]
        :return: 客体预测结果 shape = (bs, seq_len, len(predicate2id), 2)
        """
        self.eval()
        with torch.no_grad():
            seq_output, subject_ids = inputs
            # 根据subject_ids从output中取出subject的向量表征
            subject = self.extract_subject([seq_output, subject_ids])
            # 通过Conditional Layer Normalization将subject融入到object的预测中
            output = self.condLayerNorm(seq_output, subject)
            # 客体预测的置信度
            output = (torch.sigmoid(self.linear2(output)))**4
            object_preds = output.reshape(*output.shape[:2], len(predicate2id), 2)
        return object_preds


train_model = Model().to(device)

3.4 定义损失函数、评估函数

  • 损失函数就是主体BCELoss+客体BCELoss
  • 评估函数,计算f1、precision、recall
class BCELoss(nn.BCELoss):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def forward(self, inputs, targets):
        """
        loss计算
        :param inputs: Model模型forward方法的输出内容,即[subject_preds, object_preds]
        :param targets: collate_fn函数会将batch数据集组装成train_X, train_y
                        这里的targets就是train_y,即[batch_subject_labels, batch_object_labels, batch_attention_mask]
        :return: 主体loss+客体loss
        """
        subject_preds, object_preds = inputs
        subject_labels, object_labels, mask = targets

        # sujuect部分loss
        subject_loss = super().forward(subject_preds, subject_labels)
        subject_loss = subject_loss.mean(dim=-1)
        subject_loss = (subject_loss * mask).sum() / mask.sum()
        # object部分loss
        object_loss = super().forward(object_preds, object_labels)
        object_loss = object_loss.mean(dim=-1).sum(dim=-1)
        object_loss = (object_loss * mask).sum() / mask.sum()
        return subject_loss + object_loss


train_model.compile(loss=BCELoss(reduction='none'), optimizer=optim.Adam(train_model.parameters(), 1e-5))


def extract_spoes(text):
    """抽取输入text所包含的三元组
    """
    tokens = tokenizer.tokenize(text, maxlen=maxlen)
    mapping = tokenizer.rematch(text, tokens)
    token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
    token_ids = torch.tensor([token_ids], dtype=torch.long, device=device)
    segment_ids = torch.tensor([segment_ids], dtype=torch.long, device=device)

    # 抽取subject,主体头和尾的阈值分别为:0.6和0.5
    seq_output, subject_preds = train_model.predict_subject([token_ids, segment_ids])
    subject_preds[:, [0, -1]] *= 0  # 首cls, 尾sep置为0
    # 1、先筛选出大于阈值的实体头和实体尾的位置
    start = torch.where(subject_preds[0, :, 0] > 0.6)[0]
    end = torch.where(subject_preds[0, :, 1] > 0.5)[0]
    # 2、主体抽取的实现代码
    subjects = []
    for i in start:
        j = end[end >= i]
        if len(j) > 0:
            j = j[0]
            subjects.append((i.item(), j.item()))

    # 3、如果存在主体,就构造(主体、关系、客体)三元组
    if subjects:
        spoes = []
        seq_output = seq_output.repeat([len(subjects)]+[1]*(len(seq_output.shape)-1))
        subjects = torch.tensor(subjects, dtype=torch.long, device=device)
        # 传入subject,抽取object和predicate
        object_preds = train_model.predict_object([seq_output, subjects])
        object_preds[:, [0, -1]] *= 0
        for subject, object_pred in zip(subjects, object_preds):
            # 客体的阈值
            start = torch.where(object_pred[:, :, 0] > 0.6)
            end = torch.where(object_pred[:, :, 1] > 0.5)
            for _start, predicate1 in zip(*start):
                for _end, predicate2 in zip(*end):
                    if _start <= _end and predicate1 == predicate2:
                        spoes.append(
                            (
                                (mapping[subject[0]][0], mapping[subject[1]][-1]),
                                predicate1.item(),
                                (mapping[_start][0], mapping[_end][-1])
                            )
                        )
                        break
        return [(text[s[0]:s[1] + 1], id2predicate[p], text[o[0]:o[1] + 1])
                for s, p, o, in spoes]
    else:
        return []


class SPO(tuple):
    """用来存三元组的类
    表现跟tuple基本一致,只是重写了 __hash__ 和 __eq__ 方法,
    使得在判断两个三元组是否等价时容错性更好。
    """
    def __init__(self, spo):
        self.spox = (
            tuple(tokenizer.tokenize(spo[0])),
            spo[1],
            # tuple(tokenizer.tokenize(spo[2])),
            tuple(tokenizer.tokenize(spo[2])),
        )

    def __hash__(self):
        return self.spox.__hash__()

    def __eq__(self, spo):
        return self.spox == spo.spox


def evaluate(data):
    """评估函数,计算f1、precision、recall
    """
    X, Y, Z = 1e-10, 1e-10, 1e-10
    f = open('dev_pred.json', 'w', encoding='utf-8')
    pbar = tqdm()
    for d in data:
        # 预测三元组集合
        R = set([SPO(spo) for spo in extract_spoes(d['text'])])
        # 真实三元组集合
        T = set([SPO(spo) for spo in d['spo_list']])
        X += len(R & T)
        Y += len(R)
        Z += len(T)
        # 计算f1、precision、recall指标
        f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
        pbar.update()
        pbar.set_description(
            'f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall)
        )
        s = json.dumps({
            'text': d['text'],
            'spo_list': list(T),
            'spo_list_pred': list(R),
            'new': list(R - T),
            'lack': list(T - R),
        },
                       ensure_ascii=False,
                       indent=4)
        f.write(s + '\n')
    pbar.close()
    f.close()
    return f1, precision, recall


class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_f1 = 0.

    def on_epoch_end(self, steps, epoch, logs=None):
        # optimizer.apply_ema_weights()
        f1, precision, recall = evaluate(valid_dataset.data)
        if f1 >= self.best_val_f1:
            self.best_val_f1 = f1
            train_model.save_weights('best_model.pt')
        # optimizer.reset_old_weights()
        print(
            'f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n' %
            (f1, precision, recall, self.best_val_f1)
        )


if __name__ == '__main__':
    # 训练
    if True:
        evaluator = Evaluator()
        train_model.fit(train_dataloader, steps_per_epoch=None, epochs=5, callbacks=[evaluator])
    # 预测并评估
    else:
        train_model.load_weights('best_model.pt')
        f1, precision, recall = evaluate(valid_dataset.data)
# batch_size = 64设置下,训练过程中的资源消耗(2080Ti)
# 全量数据进行训练,训练一个epoch消耗时间25min左右
(transformers) root@autodl-container-adbc11ae52-f2ebff02:~/autodl-tmp/NLP_AI/a_re# nvidia-smi 
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.89.02    Driver Version: 525.89.02    CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:B2:00.0 Off |                  N/A |
|111%   74C    P2   240W / 250W |  10940MiB / 11264MiB |     96%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+
# 这里只训练了5个epochs,有兴趣的可以多训练一些批次
# 训练5个epochs的效果如下
f1: 0.74309, precision: 0.78018, recall: 0.70936
  • 12
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值