(2025|字节,MLLM,VoRA,块级蒸馏,双向视觉注意力)视觉作为 LoRA

Vision as LoRA

目录

1. 引言

2. 相关工作

2.1 基于编码器的 MLLM

2.2 无编码器 MLLM

3. Vision as LoRA

3.1 稳定训练:视觉作为 LoRA

3.2 加速训练:块级蒸馏

3.3 双向注意力机制用于视觉

4. 数据

4.1 数据收集与预处理

4.2 多模态数据混合

5. 实验

5.1 实现细节

5.2 消融实验

5.3 标准评估

6. 局限性

7. 结论和未来方向


1. 引言

本文提出了一种新范式 VoRA(Vision as LoRA),将视觉能力内置于 LLM 之中,以实现无需外部视觉编码器的多模态大语言模型(MLLM)。与主流 MLLM 依赖外部视觉模块不同,VoRA 通过直接将视觉专用的 LoRA 层集成进 LLM,使其在推理时可合并为标准模型,极大降低结构复杂度与计算开销。

  • VoRA 支持任意分辨率输入,并借助块级蒸馏(block-wise distillation)策略,将视觉先验从预训练的 Vision Transformer(ViT)迁移至 LoRA 层,从而加速训练并注入视觉知识。
  • 此外,VoRA 还引入双向注意力机制以更好捕捉图像上下文关系。

实验表明,在额外数据支持下,VoRA 性能可比拟传统基于编码器的 MLLM,表明 LLM 有望获得原生多模态能力而无需外部视觉模型。

图1. VoRA 的高层次概览。图中带有眼睛图标的部分表示视觉参数。

  • 主流的多模态大语言模型(MLLM)采用模块化、顺序式架构:首先由预训练的视觉编码器对原始图像像素进行处理,提取高级视觉特征,然后通过模态连接器与大语言模型(LLM)进行对齐,以执行视觉语言任务。
  • 相比之下,VoRA 仅由一个 LLM 和一个轻量级的嵌入层构成。LoRA 层作为视觉参数直接集成进 LLM,可在推理时无缝合并,不会带来额外的计算成本或内存负担。 

2. 相关工作

当前多模态大语言模型(MLLM)主要分为两大类:基于编码器与无编码器的模型架构。

  • 尽管编码器方法在性能上占据主导,但它们通常面临计算开销大、灵活性差等问题;
  • 而无编码器方法虽结构简洁,但训练稳定性和模态融合仍是关键挑战。

2.1 基于编码器的 MLLM

主流的 MLLM 架构通常包括三个模块:视觉编码器(如ViT)、大语言模型(LLM)与模态连接器(connector),用于桥接视觉与语言之间的模态差异。已有研究主要集中在 connector 设计的改进,从简单的 MLP 结构到层次化(hierarchical)特征融合模块再到复杂的模块组合,例如 BLIP2、LLaVA、MiniGPT 等模型。

尽管连接器方案多样,但该架构的根本问题在于对外部 ViT 的依赖。

  • 首先,当扩展多个或更大的视觉模型时,训练与推理的计算资源消耗显著增加。
  • 其次,ViT 的固定分辨率训练策略限制了输入图像的灵活性,迫使模型采用图像分块或强制缩放等替代方法,这可能造成信息丢失或性能退化。虽然部分研究尝试训练原生支持任意分辨率的 ViT,但往往依赖大规模私有数据和不透明的训练流程,难以复现。

这些限制推动了对更简洁、原生支持视觉建模的无编码器架构的研究探索。

2.2 无编码器 MLLM

为解决上述问题,部分研究探索在 Transformer 中直接处理图像与文本输入,从而省去外部视觉模型。

  • Fuyu 作为首个无编码器 MLLM 尝试,展示了其可行性,但训练资源消耗巨大,技术细节披露有限。
  • EVE 模型则引入一个单独 Transformer 块作为轻量视觉编码器,并通过蒸馏方式使其输出与 ViT 特征对齐,在主训练阶段训练全部 LLM 参数以学习视觉模态。

然而,这些方法将视觉与语言参数紧耦合,带来了严重的模态冲突,导致训练不稳定甚至语言能力的灾难性遗忘。

为缓解此类问题,Mono-InternVL 与 EVEv2 引入了参数解耦机制,借鉴 Mixture-of-Experts(MoE)思想,为视觉与语言分别保留独立的参数路径。这种方式在一定程度上避免了模态冲突,提升了训练稳定性。但该策略会使模型参数规模翻倍,显著增加了内存需求并损害结构简洁性。

相比之下,VoRA 采用了低秩适配(LoRA)策略,将视觉信息编码进 LLM 而不干扰原有语言能力,并在推理时将 LoRA 层无缝合并进 LLM,既保留了架构轻量性,又实现了模态解耦,是对现有无编码器方案的重要改进。

3. Vision as LoRA

本节介绍了 VoRA 的三大关键机制:通过 LoRA 集成视觉能力、使用块级蒸馏加速训练、引入双向注意力机制增强图像建模。

该设计突破传统 MLLM 结构,既实现模态解耦,又在不增加推理负担的前提下,赋予 LLM 以原生视觉理解能力。

3.1 稳定训练:视觉作为 LoRA

在训练阶段,如图 2(a) 所示,

  • VoRA 首先利用一个轻量视觉嵌入(embedding)层(带位置编码的浅层 MLP,约 6M 参数)将图像像素转换为视觉嵌入向量。
  • 这些视觉 token 随后与文本 token 一同输入 LLM。
  • VoRA 在 LLM 前 N_vit 个 Transformer 块的所有线性层(包括 QKV 投影与前馈层)中插入 LoRA 模块,用于专门学习视觉表示。

训练过程中,仅更新 LoRA 层与视觉嵌入层,其余 LLM 参数保持冻结。该策略可视为 “模态解耦”:语言知识得以完整保留,而视觉能力通过LoRA附加进模型中,避免了全量训练中常见的训练不稳定与模态遗忘问题。

推理阶段,如图 2(b) 所示,训练后的 LoRA 参数可被无缝合并进 LLM 中,模型结构等同于原始 LLM,仅额外保留一个视觉嵌入层,从而实现 “零推理开销”

3.2 加速训练:块级蒸馏

为了减少视觉学习对大规模图像数据的依赖,VoRA设计了一种 块级蒸馏(block-wise distillation)机制:将每一层(前 N_vit 层)LLM 中 LoRA 输出的视觉特征与 ViT 中对应块的输出对齐,从而实现视觉知识的迁移。具体方法如下:

蒸馏损失(Distillation Loss):对于 LLM 中第 i 层、第 s 个视觉 token,其输出通过一个辅助映射头 AuxHead(RMSNorm + 线性投影)后,与 ViT 中对应的特征计算余弦相似度,目标是最大化相似度。

蒸馏目标函数为:

语言建模损失(Language Modeling Loss):通过交叉熵损失优化图文对中的文本生成:

最终损失为两者之和:

与传统蒸馏不同,VoRA 只更新视觉相关 LoRA 层,而不涉及 ViT 或 LLM 主干参数,大大提高了训练效率。

3.3 双向注意力机制用于视觉

在 Transformer 中,文本生成常使用 因果掩码(causal mask),强制 token 仅关注前文内容。然而,对图像 token 而言,这种顺序性约束是多余且有害的,会妨碍图像上下文的整体建模。

为此,VoRA 在视觉部分引入 双向注意力掩码(bidirectional mask):所有图像 patch 之间可完全互见,支持全局上下文感知。文本 token 仍保持因果掩码,以确保语言生成质量。图 3 对比了这两种注意力结构。

实验证明,双向掩码显著降低了训练与蒸馏损失,并在多个基准任务上取得更优性能。这一发现与图像生成模型中的研究趋势一致,验证了 VoRA 结构在多模态生成与理解任务中的潜力。

4. 数据

本节介绍了 VoRA 在预训练阶段所使用的图像与文本数据来源、构建策略及其混合方式。

  • 尽管 VoRA 的技术核心不依赖数据工程,但合理的数据构造仍对其性能表现至关重要。
  • 为确保语言与视觉能力的平衡,构建了一个包含图文对与文本指令任务的多模态数据集。

4.1 数据收集与预处理

本文重点不在于数据工程优化,因此采用了简洁直接的数据处理策略,并参考了 EVE、Mono-InternVL 等研究中的实践。

图像数据来源:从 DataComp-1B 中选取图像,使用 Qwen2-VL-72B 自动生成图像描述,构建了约 29M 图像-文本对(DataComp29M-recap)。选图标准为图像长边大于 448 像素,以确保视觉质量。

该数据集在特定的世界知识方面存在缺失,特别是在地标、名人和艺术品等类别上。为弥补地标类数据的不足,从 Google Landmarks Dataset v2(GLDv2)中补充了大约 1.4M 张图像。

而对于其他类别,目前尚无合适的百万级公开数据集可用。此外,出于潜在伦理风险的考虑,选择不收集此类数据。因此,本方法在这些领域的表现可能不尽理想。然而,这一局限性在未来工作中可通过引入相关数据集来加以缓解。

4.2 多模态数据混合

尽管 VoRA 在训练时语言参数被冻结,长期只使用图像-文本对训练仍会削弱 LLM 的指令跟随能力。因此,作为补充,在预训练数据中混合了多个指令任务文本数据(6.4M)。 

数据配比:最终混合数据共包含约 30M 图像-文本对与 6.4M 文本任务数据,确保模型在获得视觉能力的同时,仍能保持语言理解与生成能力。

5. 实验

本节通过一系列实验验证 VoRA 各项设计的有效性,包括实现细节说明、消融实验分析及与现有方法的标准评估对比。

实验结果表明,VoRA 不仅在性能上接近甚至匹配主流 MLLM,还具有训练稳定、数据效率高、结构轻量等优点。

5.1 实现细节

训练配置:预训练阶段使用 AIMv2-Huge-448p 作为视觉教师模型,Qwen2.5-7B-Instruct 作为语言模型。学习率设为 0.0002,warm-up 步数为 100,batch size 为 256。其余超参数配置遵循文献 [29]。

微调策略:在微调阶段,所有 LoRA 层被合并进 LLM,蒸馏模块被移除,仅视觉嵌入层(6M 参数)与全量 LLM 保持可训练状态。对 VoRA-AnyRes 变体,保留固定分辨率下预训练权重,仅在微调时使用原始图像分辨率。

评估基准:模型在多个标准数据集上评估,包括:

  • VQAv2、TQA、AI2D(视觉问答)

  • SEED-Image、MMVet、MMBench(综合评估)

  • MME Perception、MME Cognition、POPE、SQA-Image、RQA、MMMU(世界知识与推理)

5.2 消融实验

本文通过消融实验分别验证了三项关键机制的贡献:LoRA 模块、块级蒸馏、双向注意力。

LoRA 稳定性与 Rank 影响

  • 全参数训练在引入视觉数据时极不稳定,如图 4 所示会出现损失 “塌陷”。
  • 相比之下,使用 LoRA(如 rank=1024)显著提升训练稳定性。如图 5 所示,rank 越高(如从 512 增加至 1024),损失略有降低,蒸馏对齐也更充分。但 rank=1536 会出现不稳定,最终默认选择 rank=1024。

注意力掩码对比:在相同配置下,双向注意力 mask 显著优于因果 mask。表 2 显示切换为双向注意力后,平均得分提升达 2.4 分。同时,其平均蒸馏损失更低,说明视觉信息传递更充分。

蒸馏策略比较:相比无蒸馏、只蒸馏最后一层的 “last-block” 方法,全块级蒸馏 “block-wise” 进一步提升性能。如表 2 所示,在双向注意力设定下,block-wise 相比 last-block 再提升 2.7 分,训练损失降低 0.016,蒸馏损失最低。

数据效率分析:以达到特定损失阈值所需训练步数评估效率。双向注意力+块级蒸馏配置在达到 loss = 1.1 时,仅需 vanilla LoRA 的 64.5% 步数,显示训练加速效果显著。如图 7 所示,目标 loss 越低,效率优势越明显。

5.3 标准评估

为确保公平性,未扩大微调数据,仅使用公开 LLaVA-665K 数据集微调,避免使用额外私有数据。

(2024|CVPR,LLaVA-1.5,LLaVA-1.5-HD,CLIP-ViT-L-336px,MLP 投影,高分辨率输入,组合能力,模型幻觉)通过视觉指令微调改进基线

对比模型设置:在相同框架下复现了 LLaVA-1.5 模型,使用相同的 Qwen2.5-7B 和 AIMv2-0.6B 作为基线,与 VoRA 做直接对比。

实验结果:如表 3 所示,VoRA 在多个任务上接近甚至匹配 LLaVA-1.5 的表现,尤其在 VQAv2、AI2D、RQA 等任务上表现优异。但在 MME Perception 上存在明显差距,主要源于预训练数据缺乏世界知识。

细分能力评估:表 4 显示,VoRA 在电影海报、名人、地标、艺术品识别方面分别落后 LLaVA-1.5 十几至几十点,验证了数据覆盖范围对世界知识任务性能的重要性。

6. 局限性

尽管 VoRA 在多项任务中展现出强大性能和结构优势,但当前方法存在的几个关键限制,主要集中在训练数据依赖、视觉 token 冗余与世界知识覆盖不足三个方面。

1)对额外预训练数据的依赖:

VoRA 完全去除了传统 MLLM 中的视觉编码器模块,因此其视觉能力必须从零学习。这意味着模型对高质量图像-文本对的预训练数据极为依赖。虽然 VoRA 利用块级蒸馏技术在一定程度上减轻了这种依赖,但如果缺少足够的数据支持,其视觉建模能力难以媲美已有的 ViT 编码器模型。

本文提出一个推测:由于省去了 ViT 的 “视觉信息压缩” 过程,VoRA 理论上可能比编码器模型具备更完整的视觉保真性,从而在规模扩展后有望实现性能反超。但目前尚无实验证据支持这一假设,主要原因在于训练资源和数据规模的限制。

2)缺乏视觉 token 压缩机制

与许多基于视觉编码器的 MLLM 不同,VoRA 在视觉输入上未采用任何 token 压缩策略(如动态采样、大 patch 划分、token pooling 等)。这导致在图像分辨率较高或序列较长时,计算量显著增加。

尽管本文为了公平性保留了 LLaVA-1.5 原有设置,未引入此类技术,但这一点在实际部署中可能成为性能瓶颈。

该问题可通过未来引入大 patch 策略、token 剪枝或融合技术加以缓解。

3)世界知识缺失带来的性能瓶颈

由于训练数据主要来自自动生成的图文对和通用图像,VoRA 在涉及世界知识(如地标、名人、艺术品识别等)方面表现不佳。表 4 数据显示,在此类任务中 VoRA 明显落后于 LLaVA-1.5。这种劣势并非架构层面的问题,而是预训练数据中未包含相关领域信息的结果。

该限制可通过后续引入专门数据集(如维基百科图像、开放名人数据等)加以弥补,从而提升模型在世界知识相关任务上的表现。

7. 结论和未来方向

本文提出了一个全新的多模态大语言模型构建范式 —— Vision as LoRA(VoRA),通过三个关键机制将视觉能力无缝集成到LLM中,避免了传统视觉编码器的结构复杂性与计算冗余:

1)视觉作为LoRA(Vision as LoRA):通过引入 LoRA 模块以适配视觉模态,同时冻结原有语言模型参数,VoRA 在推理时可将 LoRA 参数合并进 LLM,实现 “零推理开销” 的视觉集成。

2)块级蒸馏(Block-wise Distillation):利用预训练 ViT 作为教师模型,将其分层特征迁移到 LLM 前若干层的 LoRA 模块中,从而注入视觉先验并显著提升训练效率。

3)视觉双向注意力(Bidirectional Attention for Vision):针对图像 token 启用全局可见性注意力机制,增强视觉建模能力,同时保留文本 token 的自回归注意力以维持语言能力。

通过上述三项创新,VoRA 展示了无需外部视觉模型即可实现高质量视觉语言理解的能力,并具备高度的计算效率与结构灵活性。实验证明,VoRA 在多个视觉问答与多模态推理任务中取得了接近甚至匹敌传统 MLLM 的表现,验证了其作为统一架构的可行性。

未来方向:认为 VoRA 不仅限于视觉语言任务,其架构具备天然的模态泛化能力。未来的研究可围绕以下方向拓展:

  • 跨模态泛化能力:通过替换视觉教师模型为音频、点云或生物医学信号模型,并使用相应模态的 LoRA 模块,VoRA 有望扩展为统一处理语音、3D 感知、生物信号等多模态任务的通用架构。

  • 视觉 token 压缩优化:引入更高效的 token 压缩策略(如大 patch 划分、token 裁剪、聚合等)以进一步优化推理效率,特别是在高分辨率图像或视频处理任务中。

  • 世界知识注入与领域扩展:融合包含丰富背景知识的数据(如百科图像、开放百科、医疗图像等),提升模型在现实世界复杂任务中的表现能力。

VoRA 是通往 “统一多模态智能(unified multimodal intelligence)” 的重要一步,一个架构可以处理多样模态与复杂任务,同时保持高效推理与可拓展性。


论文地址:https://arxiv.org/abs/2503.20680

项目页面:https://github.com/Hon-Wong/VoRA

进 Q 学术交流群:922230617 或加 CV_EDPJ 进 W 交流群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值