详解动态规划

基本概念

  动态规划是求解决策过程最优化的数学方法。利用各个阶段之间的关系,逐个求解,最终求得全局最优解,需要确认原问题与子问题、动态规划状态、边界状态、边界状态结值、状态转移方程。

基本思想与策略

  基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
  由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。
  与分治法的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的。

适用环境

能采用动态规划求解的问题的一般要具有3个性质:

  1. 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。
  2. 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
  3. 有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

基本求解步骤

  动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

初始状态状态1状态2→...→ 状态n结束状态

  1、划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
  2、确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。
  3、确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。
  4、寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
  一般,只要解决问题的阶段状态状态转移决策确定了,就可以写出状态转移方程(包括边界条件)
  整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值,填表的过程就是根据递推关系,从1行1列开始依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

实例分析

1 三角求和

问题描述

  在下面数学三角形中寻找一条从顶部到底部的路劲,使得路劲上所经过的数字之和最大。每一步都只能往左下或者右下走,只需求出最大和,不必给出具体路径。
在这里插入图片描述

分析过程

  首先分析问题是否适用动态规划?该问题也可以看作从底出发到顶的最大和,某个点的最大路径一定是下一层两个相邻点中的最大值加本身的值,具有最优化原理。某点的最大路径只与下层点有关,与上层点无关,具有无后效性。不同的路径可能经过同一个点,具有重叠子问题。该问题满足动态规划的三个适用原则。
  动态规划解题步骤:
  ①划分阶段:
    初始阶段:第n层各点的最大路径
    阶段1:第n-1层各点最大路径
    阶段2:第n-2层各点最大路径
       …
    结束阶段:第1层各点最大路径
  ②确定状态和状态变量:
    每个状态是各点到底部的最大路径之和
  ③确定决策并写出状态转移方程:
    各点的最大路径=下一层相邻点中的最大值+本身的值
  ④寻找边界条件:
    初始阶段各点的最大路径为本身

代码答案

#define MAX 101
int main()
{
	int num[MAX][MAX], maxSum[MAX][MAX];//num存数字,maxSum存最大路径和
	int i, j, n;
	cin >> n;//输入层数
	for (i = 0; i < n; i++)//输入数字
		for (j = 0; j <= i; j++)
			cin >> num[i][j];
	for (i = 0; i < n; i++)//初始状态
		maxSum[n - 1][i] = num[n - 1][i];
	for (i = n-2; i >= 0; i--)
		for (j = 0; j <= i; j++)
			maxSum[i][j] = __max(maxSum[i + 1][j], maxSum[i + 1][j + 1]) + num[i][j];//状态转移
	cout << maxSum[0][0];
	while (1);
}

本文参考博文:https://blog.csdn.net/cangchen/article/details/45044811

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值