线性方程组

齐次线性方程组

  1. V = { ξ ∣ A ξ = O } V=\{\xi|A\xi=\Omicron\} V={ξAξ=O},其构成一个解空间
  2. 基础解系:解空间的一组基,通解就是基础解系的线性形式
    k 1 ξ 1 + k 2 ξ 2 + . . . . + k s ξ s k_1\xi_1+k_2\xi_2+....+k_s\xi_s k1ξ1+k2ξ2+....+ksξs
  3. 怎么求基础解系?行最简形(介于梯形和标准形之间,要求每行的第一个非零元素为1,这个元素所在的列的其他元素为0)

基础解系的求法

  1. 基础解系所含向量个数为 n − r ( A ) n-r(A) nr(A) A A A为系数矩阵
  2. n = r ( A ) n=r(A) n=r(A),说明基础解系所含向量个数为0,也就是说方程组有唯一解
  3. 解方程组步骤:求出行最简形式;确定真未知量和自由未知量;对自由未知量赋值(有几个未知量赋几个值,必须要线性无关),求出基础解系
  4. 定理:若 n n n阶方阵 A B = O AB=\Omicron AB=O,则 r ( A ) + r ( B ) ≤ n r(A)+r(B)\le n r(A)+r(B)n
    证明思路:把 B B B看成是未知向量,则变成了齐次方程组
  5. 定理: r ( A ) + r ( B ) ≥ r ( A + B ) r(A)+r(B)\ge r(A+B) r(A)+r(B)r(A+B)
    证明思路:A+B可被A,B的极大无关组线性表示(在(A,B)的线性空间里面)

非齐次线性方程组

  1. 非齐次线性方程组的矩阵形式: A X = B AX=B AX=B
  2. 非齐次线性方程组的有解判定:设 A A A为系数矩阵, A ˉ = ( A , β ) \bar A=(A,\beta) Aˉ=(A,β)为增广矩阵, r ( A ) = r ( A ˉ ) ↔ 有 解 r(A)=r(\bar A)\leftrightarrow有解 r(A)=r(Aˉ)
  3. 非齐次线性方程组解的性质:两解之差满足 A X = O AX=\Omicron AX=O;非齐次线性方程组的一个特解与其导出组的解得和是非齐次方程组的解
  4. 非齐次线性方程组的解的三种情况:
    (i) r ( A ) = r ( A ˉ ) = n → 有 唯 一 解 r(A)=r(\bar A)=n\rightarrow有唯一解 r(A)=r(Aˉ)=n
    (ii) r ( A ) = r ( A ˉ ) < n → 有 无 穷 解 r(A)=r(\bar A)<n\rightarrow有无穷解 r(A)=r(Aˉ)<n
    (iii) r ( A ) ≠ r ( A ˉ ) → 无 解 r(A)\neq r(\bar A)\rightarrow无解 r(A)=r(Aˉ)
    始终有 r ( A ˉ ) ≥ r ( A ) r(\bar A)\ge r(A) r(Aˉ)r(A)

含参数的方程组

  1. 判断解的情况:行列式法,判断行列式 D D D的值,如果为0则有无穷解,不为0有唯一解
  2. 仅判断是否有解:行变换法,如果 r ( A ) ≠ r ( A ˉ ) r(A)\neq r(\bar A) r(A)=r(Aˉ)则无解,否则有解
  3. 判断 β \beta β能否用 α 1 , α 2 , α 3 , . . . , α s \alpha_1,\alpha_2,\alpha_3,...,\alpha_s α1,α2,α3,...,αs表示:转化为含参数的方程组是否有解的问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值