A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy. Of course you know that it is vice versa. So you offer him to write a program that solves the ”difficult” part. Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b.
Input
The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a…h) representing the column and a digit (1…8) representing the row on the chessboard.
Output
For each test case, print one line saying ‘To get from xx to yy takes n knight moves.’.
无向无权图求最短路径,BFS即可,相对于前面的几道题这道还比较简单,注意队列要存二元组,注意八个可走方向
代码:
#include <iostream>
#include <queue>
#include <algorithm>
#include <string>
#include <cstring>
using namespace std;
typedef pair<int,int> P;
int d[8][2]={ {-2,1},{-2,-1},{-1,2},{-1,-2},{1,-2},{1,2},{2,-1},{2,1} };
bool vis[10][10];
int path[10][10];
int r,c;
void bfs(int x,int y){
queue<P> q;
q.push(make_pair(x,y));
vis[x][y]=1;
while(!q.empty()){
P pr=q.front();q.pop();
int u=pr.first,v=pr.second;
if(u==r && v==c) break;
for(int i=0;i<8;i++){
int s=u+d[i][0];
int t=v+d[i][1];
if(s<1 || t<1 || s>8 || t>8) continue;
if(!vis[s][t]){
vis[s][t]=1;
path[s][t]=path[u][v]+1;
q.push(make_pair(s,t));
}
}
}
}
int main()
{
string s1,s2;
while(cin>>s1>>s2){
memset(vis,0,sizeof vis);
memset(path,0,sizeof path);
r=s2[0]-'a'+1; c=s2[1]-'0';
bfs(s1[0]-'a'+1,s1[1]-'0');
cout<<"To get from "<<s1<<" to "<<s2<<" takes "<<path[r][c]<<" knight moves.\n";
}
return 0;
}