2020 CCPC 秦皇岛 G - Good Number(数学+分块)

传送门


题目大意

一个数 x x x被定义为 G o o d    n u m b e r Good~~number Good  number当且仅当 ⌊ x k ⌋ \lfloor \sqrt[k]{x} \rfloor kx 能整除 x x x。对于给定的 n , k n,k n,k,求出 [ 1 , n ] [1,n] [1,n]中有多少 G o o d    n u m b e r Good~~number Good  number

解题思路

因为开 k k k次方的算递减的非常快的,对于 i n t int int范围内的数,显然 k ≥ 32 k \geq 32 k32时向下取整就已经变成 1 1 1了, 1 1 1一定整除所有数那么答案为 n n n。还有一个特殊情况就是 k = 1 k=1 k=1时,每个数最后得到的都是它本身,那么答案也为 n n n

不难发现实际上结果是分块的,也就是对于某一 k k k [ p k , ( p + 1 ) k ) [p^k,(p+1)^{k}) [pk,(p+1)k)范围内的数开 k k k次方得到的答案都为 p p p。但是这个区间内整除 p p p的数有多少个怎么算?

首先不难想到一个十分经典的数学问题 [ 1 , n ] [1,n] [1,n]以内有多少数能被 x x x整除——答案就是 ⌊ n x ⌋ \lfloor \frac{n}{x} \rfloor xn,那么不难想到可以使用容斥去解决这个问题,也就是对于区间 [ a , b ] [a,b] [a,b]求有多少个能被 x x x整除的数: ⌊ b x ⌋ − ⌊ a − 1 x ⌋ \lfloor \frac{b}{x} \rfloor - \lfloor \frac{a-1}{x} \rfloor xbxa1。还有一种思路是因为左边界恰好被 p p p整除,那么我们就单独计算左边界,然后求 ( p k + 1 , ( p + 1 ) k ) (p^k+1,(p+1)^k) (pk+1,(p+1)k)有多少能被 p p p整除,这时模 p p p的剩余系是从 1 1 1开始的,那么直接 ⌊ ( p + 1 ) k − p k p ⌋ \lfloor \frac{(p+1)^k-p^k}{p} \rfloor p(p+1)kpk就能得到正确结果—— 1 + ⌊ ( p + 1 ) k − p k p ⌋ 1+\lfloor \frac{(p+1)^k-p^k}{p} \rfloor 1+p(p+1)kpk

最后就是边界问题,只需判断什么时候 p k ≤ n ≤ ( p + 1 ) k p^k \leq n \leq (p+1)^k pkn(p+1)k,然后右界设为 n n n,统计结束后 b r e a k break break

扩展

前不久遇到了一个求 [ 1 , n ] [1,n] [1,n]有多少平方数的问题,细想一下也就是 ⌊ n ⌋ \lfloor \sqrt{n} \rfloor n

感悟

现场赛被这题卡住实在是心态不够好

#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>

using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define Vector Point
#define ENDL "\n"
#define lowbit(x) (x&(-x))
#define mkp(x, y) make_pair(x,y)
#define mem(a, x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 1e9 + 7;
const int maxn = 2e5 + 10;

ll n, k;
int T;

ll qkp(ll x, ll n) {
    ll ans = 1;
    while (n) {
        if (n & 1) ans *= x;
        x *= x;
        n >>= 1;
    }
    return ans;
}

ll solve() {
    if (k == 1 || k >= 32) return n;
    ll ans = 0, l, r;
    for (int i = 1;; i++) {
        l = qkp(i, k), r = qkp(i + 1, k) - 1;
        //cout << l << " " << r << endl;
        if (l <= n && n <= r) {
            if (l == n) ans++;
            else {
                r = n;
                ans += 1 + (r - l) / i;
                //ans += r / i - (l - 1) / i;
            }
            break;
        }
        ans += 1 + (r - l) / i;
        //ans += r / i - (l - 1) / i;
    }
    return ans;
}

int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int kase = 0;
    cin >> T;
    while (T--) {
        cin >> n >> k;
        cout << "Case #" << ++kase << ": ";
        cout << solve() << endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值