Codeforces 875F. Royal Questions(贪心+并查集)

传送门


题目大意

n n n个王子, m m m个公主,每个公主都恰好有两位中意的王子以及会带来的彩礼价值,问如何安排婚姻可以使得总的彩礼价值和最大。

解题思路

第一眼可能觉得是二分图,但是数据范围显然跑不了二分图的算法。

首先明确一点。也就是说将彩礼价值从大到小排序后,如果能选价值大的那么一定先选,这样结果不会变差,这启发我们进行第一步排序。

然后我们分析这样一个例子,三个公主中意的王子分别为 ( 1 , 2 ) , ( 2 , 3 ) , ( 3 , 4 ) (1,2),(2,3),(3,4) (1,2),(2,3),(3,4),我们把王子看做点,关系看做边,得到如下集合,此时这里的任意三个人都可以分配婚姻,而且可以剩余任意一个人单身等待下面的婚姻。
在这里插入图片描述
而如果这时下一位公主中意的王子为 ( 1 , 4 ) (1,4) (1,4),那么会导致集合变成一个环,因此这时集合无法再配对婚姻。这时我们发现,所有的集合要么有一个人可以配对婚姻,要么就没有人能配对婚姻,具体是谁和谁成亲我们不需要考虑。
在这里插入图片描述
上述启发我们使用并查集操作每个集合,此外设置一个数组 h a s [ i ] = 1 has[i] = 1 has[i]=1表示仍有这个集合仍有一个人可以配对,否则无人可以配对,然后就是两种情况的讨论了。

//
// Created by Happig on 2021/2/22.
//
#include <bits/stdc++.h>
#include <unordered_map>

using namespace std;
#define ENDL "\n"
#define lowbit(x) (x & (-x))
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 1e9 + 7;
const int maxn = 2e5 + 10;

int f[maxn], has[maxn];

int Find(int x) {
    return f[x] == x ? x : f[x] = Find(f[x]);
}

struct node {
    int x, y, val;

    bool operator<(const node &p) const {
        return val > p.val;
    }
} a[maxn];


int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, m, k;
    cin >> n >> m;
    for (int i = 0; i < m; i++) {
        cin >> a[i].x >> a[i].y >> a[i].val;
    }
    sort(a, a + m);
    for (int i = 1; i <= n; i++) f[i] = i, has[i] = 1;
    ll ans = 0;
    for (int i = 0; i < m; i++) {
        int fx = Find(a[i].x), fy = Find(a[i].y);
        if (fx != fy) {
            if (has[fx] || has[fy]) {
                f[fx] = fy;
                ans += a[i].val;
                has[fy] = (has[fx] & has[fy]);
            }
        } else {
            if (has[fx]) {
                ans += a[i].val;
                has[fx] = 0;
            }
        }
    }
    cout << ans << ENDL;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值