史上最详细 Lipreading using Temporal Convolutional Networks 环境配置

唇语识别是目前人工智能领域比较热门的应用之一,本文将在之后的内容中介绍2020年英文词汇级唇语识别在LRW(Lir Reading in the Wild)数据集以及LRW-1000两个数据集上实现SOTA的项目github,可以在唇语识别数据集综述中找到这两个数据集的官网,以及其他常用数据集的地址,下面是论文地址Lipreading using Temporal Convolutional Networks

这是目前常用的几个大型数据集的介绍史上最详细LRW、LRW-1000和OuluVS2数据集介绍其中包含数据集的下载链接

0.介绍

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该项目中实现唇语识别的过程主要步骤

  1. 将人脸标记出来
    在这里插入图片描述

  2. 对齐每一帧以参考平均脸型
    在这里插入图片描述

  3. 从已对齐的人脸图像中裁剪出固定的96×96像素宽ROIs,使嘴部区域始终粗略地以图像裁剪为中心
    在这里插入图片描述

  4. 将裁剪的图像转换为灰度图
    在这里插入图片描述

该项目并未给出训练模型的代码,只有测试与训练模型的代码,所以本人近期将尝试复现该项目的训练代码。

代码分析的博客在本人主页,欢迎感兴趣的童鞋持续关注

下面开始正式的测试代码的环境配置

1.下载项目源代码

将项目的源代码下载到本地
在这里插入图片描述

2.环境配置

1.pytorch

参考史上最详细yolov5环境配置搭建+配置所需文件中的第234步进行pytorch-GPU的基本配置在这里插入图片描述
其中需要的文件如cuda,cudnn等均有提供,需要的可以自行下载

2.其他库

通过anaconda进入虚拟环境中,将下面的代码复制进去,即可完成其他库的安装

pip install numpy
pip install scipy
pip install opencv-python
pip install matplotlib
pip install tqdm
pip install scikit-image

3.模型下载

官网提供了预训练的模型
在这里插入图片描述
模型下载完不用解压,程序会自动解压导入

4.数据集准备

本文是在LRW数据集上进行测试的,使用者需要先申请LRW数据集,将数据集下载下来按官网的步骤,链接,解压即可。
在运行测试之前还需要预处理数据
在这里插入图片描述
将官网提供的landmark文件下载下来,并解压到landmarks文件夹中。进入到crop_mouth_from_video.py中,将–video-direc设置为lrw数据集的路径,–landmark-direc设置为landmas的路径,–save-direc设置为输出结果的路径,–convert-gray设置为True(转化为灰度图),–testset-only设置为True(只转化测试集),

运行代码可能会有list out of index的错误,解决方法:1.linux环境or2.使用在windows调通的代码,提取码:1111

5.进行测试

进入main.py,修改测试参数,–data-dir设置为预处理代码的输出路径,–model-path设置为下载模型的位置,–config-path设置为与模型对应的json文件路径。完成基本设置即可运行测试代码,在一台i7+1050Ti笔记本中运行20分钟即可完成模型测试,ps(共有500*50=25000个样本,使用的是轻量模型中准确率做高的snv1x_dsmstcn3x模型,准确率为85.312%)在这里插入图片描述
另一个模型为改项目准确度最高但较大的模型–resnet18_mstcn_adamw_s3,准确率为87.94%
在这里插入图片描述

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 121
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值