卷积网络基本概念
张量:是一个物理量,对高维 (维数 ≥ 2) 的物理量进行 “量纲分析” 的一种工具。简单的可以理解为,一维数组称为矢量,二维数组为二阶张量,三维数组为三阶张量。
计算图:用“结点”(nodes)和“线”(edges)的有向图来描述数学计算的图像。“节点” 一般用来表示施加的数学操作,但也可以表示数据输入的起点/输出的终点,或者是读取/写入持久变量的终点。“线”表示“节点”之间的输入/输出关系。这些数据“线”可以输运“size可动态调整”的多维数据数组,即 “张量”(tensor)。
填充:在矩阵的边界上填充一些值,以增加矩阵的大小,通常用0或者复制边界像素来进行填充。
步长:单次卷积移动时的距离,下图步长为2。
卷积:从左上角开始,卷积核就对应着数据的3*3的矩阵范围,然后相乘再相加得出一个值。按照这种顺序,每隔一个像素就操作一次,我们就可以得出9个值。这九个值形成的矩阵被我们称作激活映射(Activation map)。这就是我们的卷积层工作原理。
多通道卷积:利用不同卷积核分别对数据进行卷积操作,来获取不同的特征值汇总。以rgb卷积为例:
池化:池化层是降低参数,而降低参数的方法当然也只有删除参数了。一般我们有最大池化和平均池化,而最大池化就我认识来说是相对多的。需要注意的是,池化层一般放在卷积层后面。所以池化层池化的是卷积层的输出
基本卷积神经网络
网络一共有8层可学习层——5层卷积层和3层全连接层,随网络深入,宽、高衰减,通道数增加。