- 证明
lim
‾
A
n
⊆
lim
‾
A
n
\underline{\lim}A_n\subseteq\overline{\lim}A_n
limAn⊆limAn,hint:集合定义,特征函数
证明: 令 元 素 x 对 应 集 合 A n 的 特 征 函 数 为 E n ( x ) 若 x ∈ lim ‾ A n , 则 ∏ k = 1 + ∞ ∑ n = k + ∞ E n ( x ) > 0 ⋯ [ 1 ] 若 x ∈ lim ‾ A n , 则 ∑ k = 1 + ∞ ∏ n = k + ∞ E n ( x ) > 0 ⋯ [ 2 ] 若 [ 1 ] 为 真 , 则 ∃ K , 使 得 对 任 意 大 的 k ′ > K , ∑ n = k ′ + ∞ E n ( x ) > 0 ⇒ E k ′ ( x ) = 1 , ∀ k ′ > K ⇒ ∏ n = k ′ + ∞ E n ( x ) > 0 ⇒ ∑ k = 1 + ∞ ∏ n = k + ∞ E n ( x ) > 0 故 [ 1 ] ⇒ [ 2 ] 即 [ 1 ] ⊆ [ 2 ] \begin{aligned} &令元素x对应集合A_n的特征函数为E_n(x)\\ &若x\in\underline{\lim}A_n,则\prod_{k=1}^{+\infty}\sum_{n=k}^{+\infty}E_n(x)>0\cdots[1]\\ &若x\in\overline{\lim}A_n,则\sum_{k=1}^{+\infty}\prod_{n=k}^{+\infty}E_n(x)>0\cdots[2]\\ &若[1]为真,\\ 则&\exist K,使得对任意大的k'>K,\sum_{n=k'}^{+\infty}E_n(x)>0\\ \Rightarrow&E_{k'}(x)=1,\forall k'>K\\ \Rightarrow&\prod_{n=k'}^{+\infty}E_n(x)>0\\ \Rightarrow&\sum_{k=1}^{+\infty}\prod_{n=k}^{+\infty}E_n(x)>0\\ &故[1]\Rightarrow[2]\\ &即[1]\subseteq[2]\\ \end{aligned} 则⇒⇒⇒令元素x对应集合An的特征函数为En(x)若x∈limAn,则k=1∏+∞n=k∑+∞En(x)>0⋯[1]若x∈limAn,则k=1∑+∞n=k∏+∞En(x)>0⋯[2]若[1]为真,∃K,使得对任意大的k′>K,n=k′∑+∞En(x)>0Ek′(x)=1,∀k′>Kn=k′∏+∞En(x)>0k=1∑+∞n=k∏+∞En(x)>0故[1]⇒[2]即[1]⊆[2] - 证明: E ( f ≤ c ) = E ( lim n → ∞ f n ≤ c ) ∵ ∀ k , 有 f k ≤ f k + 1 ≤ f k + 2 ≤ ⋯ ≤ lim t → ∞ f k + t = lim n → ∞ f n ∴ lim n → ∞ f n ≤ c ⇆ f k ≤ c , ∀ k > 0 即 E ( lim n → ∞ f n ≤ c ) = ⋂ n = 1 ∞ E ( f n ≤ c ) 又 E ( f k ≤ c ) ⊆ E ( f k − 1 ≤ c ) 故 E ( lim n → ∞ f n ≤ c ) ⊆ E ( f k ≤ c ) 因 此 有 { f n ≤ c } ∩ { f m ≤ c } = { f max ( n , m ) ≤ c } ∴ 设 { i } i = 1 N 为 正 整 数 集 中 的 升 序 子 序 列 , 则 i ≤ N 且 有 ⋂ i = 1 N E ( f i ≤ c ) = E ( f N ≤ c ) 故 有 lim N → ∞ ⋂ i = 1 N E ( f i ≤ c ) = lim N → ∞ E ( f N ≤ c ) 即 ⋂ i = 1 ∞ E ( f i ≤ c ) = lim N → ∞ E ( f N ≤ c ) 证 毕 \begin{aligned} &E(f\le c)=E(\lim_{n\to\infty }f_n\le c)\\ &\because\forall k,有f_{k}\le f_{k+1}\le f_{k+2}\le\cdots\le\lim_{t\to\infty}f_{k+t}=\lim_{n\to\infty }f_n\\ &\therefore\lim_{n\to\infty }f_n\le c\leftrightarrows f_k\le c,\forall k>0\\ &即E(\lim_{n\to\infty }f_n\le c)=\bigcap_{n=1}^\infty E(f_n\le c)\\ &又E(f_k\le c)\subseteq E(f_{k-1}\le c)\\ &故E(\lim_{n\to\infty }f_n\le c)\subseteq E(f_k\le c)\\ &因此有\{f_n\le c\}\cap\{f_m\le c\}=\{f_{\max(n,m)}\le c\}\\ &\therefore设\{i\}_{i=1}^N为正整数集中的升序子序列,则i\le N\\ &且有\bigcap_{i=1}^NE(f_{i}\le c)= E(f_{N\le c})\\ &故有\lim_{N\to\infty}\bigcap_{i=1}^NE(f_{i}\le c)=\lim_{N\to\infty} E(f_N\le c)\\ &即\bigcap_{i=1}^\infty E(f_{i}\le c)=\lim_{N\to\infty} E(f_N\le c)\\ &证毕 \end{aligned} E(f≤c)=E(n→∞limfn≤c)∵∀k,有fk≤fk+1≤fk+2≤⋯≤t→∞limfk+t=n→∞limfn∴n→∞limfn≤c⇆fk≤c,∀k>0即E(n→∞limfn≤c)=n=1⋂∞E(fn≤c)又E(fk≤c)⊆E(fk−1≤c)故E(n→∞limfn≤c)⊆E(fk≤c)因此有{fn≤c}∩{fm≤c}={fmax(n,m)≤c}∴设{i}i=1N为正整数集中的升序子序列,则i≤N且有i=1⋂NE(fi≤c)=E(fN≤c)故有N→∞limi=1⋂NE(fi≤c)=N→∞limE(fN≤c)即i=1⋂∞E(fi≤c)=N→∞limE(fN≤c)证毕
事实上该结论为上一题结论的否定形式。
E ( f > c ) ⇆ ∃ 某 个 N , 使 得 对 一 切 n > N 有 f n > c 且 E ( f n > c ) ⊇ E ( f m > c ) 为 真 当 且 仅 当 n ≥ m ∴ E ( f n > c ) ∪ E ( f m > c ) = E ( f m > c ) , ( n ≥ m ) ∴ ⋃ i = 1 N E ( f i > c ) = E ( f N > c ) 取 极 限 后 ⋃ i = 1 ∞ E ( f i > c ) = lim N → ∞ E ( f N > c ) = E ( lim N → ∞ f N > c ) = E ( f > c ) \begin{aligned} &E(f>c)\leftrightarrows\exist某个N,使得对一切n>N有f_n>c\\ &且E(f_n>c)\supseteq E(f_m>c)为真当且仅当n\ge m\\ &\therefore E(f_n>c)\cup E(f_m>c)=E(f_m>c),(n\ge m)\\ &\therefore\bigcup_{i=1}^NE(f_i>c)=E(f_N>c)\\ &取极限后\bigcup_{i=1}^\infty E(f_i>c)=\lim_{N\to\infty}E(f_N>c)=E(\lim_{N\to\infty}f_N>c)=E(f>c) \end{aligned} E(f>c)⇆∃某个N,使得对一切n>N有fn>c且E(fn>c)⊇E(fm>c)为真当且仅当n≥m∴E(fn>c)∪E(fm>c)=E(fm>c),(n≥m)∴i=1⋃NE(fi>c)=E(fN>c)取极限后i=1⋃∞E(fi>c)=N→∞limE(fN>c)=E(N→∞limfN>c)=E(f>c)
设 A 是 无 限 不 可 列 集 则 对 任 意 由 A 中 元 素 组 成 的 可 列 集 { a i } i = 1 N 有 { a i } ⫋ A \begin{aligned} &设A是无限不可列集\\ &则对任意由A中元素组成的可列集\{a_i\}_{i=1}^N有\{a_i\}\subsetneqq A \end{aligned} 设A是无限不可列集则对任意由A中元素组成的可列集{ai}i=1N有{ai}⫋A