实分析作业-第八周

  1. 证明 lim ⁡ ‾ A n ⊆ lim ⁡ ‾ A n \underline{\lim}A_n\subseteq\overline{\lim}A_n limAnlimAn,hint:集合定义,特征函数
    证明: 令 元 素 x 对 应 集 合 A n 的 特 征 函 数 为 E n ( x ) 若 x ∈ lim ⁡ ‾ A n , 则 ∏ k = 1 + ∞ ∑ n = k + ∞ E n ( x ) > 0 ⋯ [ 1 ] 若 x ∈ lim ⁡ ‾ A n , 则 ∑ k = 1 + ∞ ∏ n = k + ∞ E n ( x ) > 0 ⋯ [ 2 ] 若 [ 1 ] 为 真 , 则 ∃ K , 使 得 对 任 意 大 的 k ′ > K , ∑ n = k ′ + ∞ E n ( x ) > 0 ⇒ E k ′ ( x ) = 1 , ∀ k ′ > K ⇒ ∏ n = k ′ + ∞ E n ( x ) > 0 ⇒ ∑ k = 1 + ∞ ∏ n = k + ∞ E n ( x ) > 0 故 [ 1 ] ⇒ [ 2 ] 即 [ 1 ] ⊆ [ 2 ] \begin{aligned} &令元素x对应集合A_n的特征函数为E_n(x)\\ &若x\in\underline{\lim}A_n,则\prod_{k=1}^{+\infty}\sum_{n=k}^{+\infty}E_n(x)>0\cdots[1]\\ &若x\in\overline{\lim}A_n,则\sum_{k=1}^{+\infty}\prod_{n=k}^{+\infty}E_n(x)>0\cdots[2]\\ &若[1]为真,\\ 则&\exist K,使得对任意大的k'>K,\sum_{n=k'}^{+\infty}E_n(x)>0\\ \Rightarrow&E_{k'}(x)=1,\forall k'>K\\ \Rightarrow&\prod_{n=k'}^{+\infty}E_n(x)>0\\ \Rightarrow&\sum_{k=1}^{+\infty}\prod_{n=k}^{+\infty}E_n(x)>0\\ &故[1]\Rightarrow[2]\\ &即[1]\subseteq[2]\\ \end{aligned} xAnEn(x)xlimAnk=1+n=k+En(x)>0[1]xlimAnk=1+n=k+En(x)>0[2][1]K使k>K,n=k+En(x)>0Ek(x)=1,k>Kn=k+En(x)>0k=1+n=k+En(x)>0[1][2][1][2]
  2. 在这里插入图片描述证明: E ( f ≤ c ) = E ( lim ⁡ n → ∞ f n ≤ c ) ∵ ∀ k , 有 f k ≤ f k + 1 ≤ f k + 2 ≤ ⋯ ≤ lim ⁡ t → ∞ f k + t = lim ⁡ n → ∞ f n ∴ lim ⁡ n → ∞ f n ≤ c ⇆ f k ≤ c , ∀ k > 0 即 E ( lim ⁡ n → ∞ f n ≤ c ) = ⋂ n = 1 ∞ E ( f n ≤ c ) 又 E ( f k ≤ c ) ⊆ E ( f k − 1 ≤ c ) 故 E ( lim ⁡ n → ∞ f n ≤ c ) ⊆ E ( f k ≤ c ) 因 此 有 { f n ≤ c } ∩ { f m ≤ c } = { f max ⁡ ( n , m ) ≤ c } ∴ 设 { i } i = 1 N 为 正 整 数 集 中 的 升 序 子 序 列 , 则 i ≤ N 且 有 ⋂ i = 1 N E ( f i ≤ c ) = E ( f N ≤ c ) 故 有 lim ⁡ N → ∞ ⋂ i = 1 N E ( f i ≤ c ) = lim ⁡ N → ∞ E ( f N ≤ c ) 即 ⋂ i = 1 ∞ E ( f i ≤ c ) = lim ⁡ N → ∞ E ( f N ≤ c ) 证 毕 \begin{aligned} &E(f\le c)=E(\lim_{n\to\infty }f_n\le c)\\ &\because\forall k,有f_{k}\le f_{k+1}\le f_{k+2}\le\cdots\le\lim_{t\to\infty}f_{k+t}=\lim_{n\to\infty }f_n\\ &\therefore\lim_{n\to\infty }f_n\le c\leftrightarrows f_k\le c,\forall k>0\\ &即E(\lim_{n\to\infty }f_n\le c)=\bigcap_{n=1}^\infty E(f_n\le c)\\ &又E(f_k\le c)\subseteq E(f_{k-1}\le c)\\ &故E(\lim_{n\to\infty }f_n\le c)\subseteq E(f_k\le c)\\ &因此有\{f_n\le c\}\cap\{f_m\le c\}=\{f_{\max(n,m)}\le c\}\\ &\therefore设\{i\}_{i=1}^N为正整数集中的升序子序列,则i\le N\\ &且有\bigcap_{i=1}^NE(f_{i}\le c)= E(f_{N\le c})\\ &故有\lim_{N\to\infty}\bigcap_{i=1}^NE(f_{i}\le c)=\lim_{N\to\infty} E(f_N\le c)\\ &即\bigcap_{i=1}^\infty E(f_{i}\le c)=\lim_{N\to\infty} E(f_N\le c)\\ &证毕 \end{aligned} E(fc)=E(nlimfnc)kfkfk+1fk+2tlimfk+t=nlimfnnlimfncfkc,k>0E(nlimfnc)=n=1E(fnc)E(fkc)E(fk1c)E(nlimfnc)E(fkc){fnc}{fmc}={fmax(n,m)c}{i}i=1NiNi=1NE(fic)=E(fNc)Nlimi=1NE(fic)=NlimE(fNc)i=1E(fic)=NlimE(fNc)
  3. 在这里插入图片描述
    事实上该结论为上一题结论的否定形式。
    E ( f > c ) ⇆ ∃ 某 个 N , 使 得 对 一 切 n > N 有 f n > c 且 E ( f n > c ) ⊇ E ( f m > c ) 为 真 当 且 仅 当 n ≥ m ∴ E ( f n > c ) ∪ E ( f m > c ) = E ( f m > c ) , ( n ≥ m ) ∴ ⋃ i = 1 N E ( f i > c ) = E ( f N > c ) 取 极 限 后 ⋃ i = 1 ∞ E ( f i > c ) = lim ⁡ N → ∞ E ( f N > c ) = E ( lim ⁡ N → ∞ f N > c ) = E ( f > c ) \begin{aligned} &E(f>c)\leftrightarrows\exist某个N,使得对一切n>N有f_n>c\\ &且E(f_n>c)\supseteq E(f_m>c)为真当且仅当n\ge m\\ &\therefore E(f_n>c)\cup E(f_m>c)=E(f_m>c),(n\ge m)\\ &\therefore\bigcup_{i=1}^NE(f_i>c)=E(f_N>c)\\ &取极限后\bigcup_{i=1}^\infty E(f_i>c)=\lim_{N\to\infty}E(f_N>c)=E(\lim_{N\to\infty}f_N>c)=E(f>c) \end{aligned} E(f>c)N使n>Nfn>cE(fn>c)E(fm>c)nmE(fn>c)E(fm>c)=E(fm>c),(nm)i=1NE(fi>c)=E(fN>c)i=1E(fi>c)=NlimE(fN>c)=E(NlimfN>c)=E(f>c)
  4. 在这里插入图片描述
    设 A 是 无 限 不 可 列 集 则 对 任 意 由 A 中 元 素 组 成 的 可 列 集 { a i } i = 1 N 有 { a i } ⫋ A \begin{aligned} &设A是无限不可列集\\ &则对任意由A中元素组成的可列集\{a_i\}_{i=1}^N有\{a_i\}\subsetneqq A \end{aligned} AA{ai}i=1N{ai}A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值