多元统计分析-期末复习[一]

多元随机变量

(略)

多元正态分布

定义1:

   X = A U + μ ∼ N p ( μ , A A ′ ) X=AU+\mu \sim N_p(\mu,AA') X=AU+μNp(μ,AA)
  其中 U = ( U ) p × 1 U=(U)_{p \times1} U=(U)p×1 U i ∼ N ( 0 , 1 ) U_i\sim N(0,1) UiN(0,1

性质:

  1. 特征函数
  2. X ∼ N p ( μ , Σ ) X \sim N_p(\mu,\Sigma) XNp(μ,Σ),令 Z = B X + d Z=BX+d Z=BX+d,则 Z ∼ N S ( B μ + d , B Σ B ′ ) Z \sim N_S(B\mu +d,B\Sigma B') ZNS(Bμ+d,BΣB),即正态分布的线性组合(包括边缘分布)仍是正态分布
  3. μ , Σ \mu,\Sigma μ,Σ分别是正态分布的期望与方差
  4. X ∼ N p ( μ , Σ ) ↔ ξ 1 × 1 = a 1 × p X p × 1 ∼ N 1 X\sim N_p(\mu,\Sigma) \leftrightarrow \xi_{1\times 1}=a_{1\times p}X{p\times 1} \sim N_1 XNp(μ,Σ)ξ1×1=a1×pXp×1N1

定义2:

   p p p维随机向量 X X X的任意线性组合均服从一元正态分布,则称 X X X p p p维正态随机向量

性质:

  1. X ∼ N p ( μ , Σ ) X \sim N_p(\mu,\Sigma) XNp(μ,Σ) Σ \Sigma Σ正定,则 X X X的联合密度函数
    f ( X ) = 1 ( 2 π ) p 2 ∣ Σ ∣ 1 2 e x p [ − 1 2 ( X − μ ) ′ Σ − 1 ( X − μ ) ] f(X)=\frac{1}{(2\pi)^\frac{p}{2}\left| \Sigma \right|^\frac{1}{2}}exp[-\frac{1}{2}(X-\mu)'\Sigma^{-1}(X-\mu)] f(X)=(2π)2pΣ211exp[21(Xμ)Σ1(Xμ)]
    证明:
    ∵ X = A U + d f U ( U ) = 1 ( 2 π ) p 2 e x p [ − 1 2 U ′ U ] f X ( X ) = f U J ( U → X ) 又 ∵ J ( U → X ) = 1 J ( X → U ) = ∣ Σ ∣ − 1 2 ∴ 得 证 \because X =AU+d\\ f_U(U)=\frac{1}{(2\pi)^\frac{p}{2}}exp[-\frac{1}{2}U'U]\\ f_X(X)=f_UJ(U\rightarrow X)\\ 又\because J(U\rightarrow X)=\frac{1}{J(X\rightarrow U)}=\left| \Sigma\right|^{-\frac{1}{2}}\\ \therefore 得证 X=AU+dfU(U)=(2π)2p1exp[21UU]fX(X)=fUJ(UX)J(UX)=J(XU)1=Σ21

定义3:

  若 X X X的联合密度函数如定义2所示,则 X X X p p p维正态随机向量

二元正态:

  设 X = [ X 1 X 2 ] X=\begin{bmatrix}X_1\\X_2\end{bmatrix} X=[X1X2],且 X ∼ N 2 ( μ , Σ ) X\sim N_2(\mu,\Sigma) XN2(μ,Σ)

ρ \rho ρ的统计意义:

  记 μ = [ μ 1 μ 2 ] , Σ = [ σ 11 σ 12 σ 21 σ 22 ] = [ σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ] \mu=\begin{bmatrix}\mu_1\\\mu_2\end{bmatrix},\Sigma=\begin{bmatrix}\sigma_{11}&\sigma_{12}\\\sigma_{21}&\sigma_{22}\end{bmatrix}=\begin{bmatrix}\sigma_1^2&\rho\sigma_1\sigma_2\\\rho\sigma_1\sigma_2&\sigma_2^2\end{bmatrix} μ=[μ1μ2],Σ=[σ11σ21σ12σ22]=[σ12ρσ1σ2ρσ1σ2σ22]
  则有 X 1 ∼ N ( μ 1 , σ 1 2 ) , X 2 ∼ N ( μ 2 , σ 2 2 ) X_1 \sim N(\mu_1,\sigma_1^2),X_2 \sim N(\mu_2,\sigma_2^2) X1N(μ1,σ12),X2N(μ2,σ22)
  且 ρ ( X 1 , X 2 ) = C o v ( X 1 , X 2 ) V a r ( X 1 ) V a r ( X 2 ) = ρ \rho(X_1,X_2)=\frac{Cov(X_1,X_2)}{\sqrt{Var(X_1)}\sqrt{Var(X_2)}}=\rho ρ(X1,X2)=Var(X1) Var(X2) Cov(X1,X2)=ρ
   ∴ ρ \therefore \rho ρ就是相关系数

  1. ρ = 0 \rho=0 ρ=0时,显然独立
  2. ∣ ρ ∣ = 1 |\rho |=1 ρ=1 ∣ Σ ∣ = 0 |\Sigma|=0 Σ=0,即 Σ x = 0 \Sigma x=0 Σx=0有非零解,可推出 X 1 X 2 X_1X_2 X1X2线性相关

矩阵正态分布:

定义:

  设 X ( i ) = [ X i 1 X i 2 . . . X i p ] X_{(i)}=\begin{bmatrix}X_{i1}\\X_{i2}\\...\\X_{ip}\end{bmatrix} X(i)=Xi1Xi2...Xip为来自 N p ( μ , Σ ) N_p(\mu,\Sigma) Np(μ,Σ)的随机样本,观测 n n n次,得到 X n × p X_{n\times p} Xn×p,将 X X X按行拉直得到 V e c ( X ′ ) Vec(X') Vec(X)
  若 V e c ( X ′ ) ∼ N n p ( 1 n ⨂ μ , I n ⨂ Σ ) Vec(X') \sim N_{np}(\mathbf{1}_n\bigotimes \mu,I_n\bigotimes \Sigma) Vec(X)Nnp(1nμ,InΣ),则称 X X X服从矩阵正态分布,一般记作 X ∼ N n × p ( M , I n ⨂ Σ ) X\sim N_{n\times p}(M,I_n\bigotimes \Sigma) XNn×p(M,InΣ)
  其中 V e c ( M ′ ) = 1 n ⨂ μ Vec(M')=\mathbf{1}_n\bigotimes \mu Vec(M)=1nμ,即 M = 1 n μ ′ M=\mathbf{1}_n\mu' M=1nμ
   ⨂ \bigotimes 为克罗内克积

矩阵正态分布的性质:

  设 X ∼ N n × p ( M , I n ⨂ Σ ) X\sim N_{n\times p}(M,I_n\bigotimes \Sigma) XNn×p(M,InΣ) A A k × n k\times n k×n常数矩阵, B B B q × p q\times p q×p常数矩阵, D D D k × q k\times q k×q常数矩阵,令 Z = A X B ′ + D Z=AXB'+D Z=AXB+D,则:
   Z ∼ N k × q ( A M B ′ + D , ( A A ′ ) ⨂ ( B Σ B ′ ) ) Z\sim N_{k\times q}(AMB'+D,(AA')\bigotimes(B\Sigma B')) ZNk×q(AMB+D,(AA)(BΣB))
  也就是说,对多维正态样本进行线性组合,得到的新样本服从矩阵正态分布,即新的总体仍是正态总体。

条件分布与独立性:

X p X_p Xp的分块:

  设 X p = [ X ( 1 ) X ( 2 ) ] ∼ N p ( [ μ ( 1 ) μ ( 2 ) ] , [ Σ 11 Σ 12 Σ 21 Σ 22 ] ) X_p=\begin{bmatrix}X^{(1)}\\ X^{(2)} \end{bmatrix}\sim N_p(\begin{bmatrix}\mu^{(1)}\\\mu^{(2)}\end{bmatrix}, \begin{bmatrix}\Sigma_{11}&\Sigma_{12}\\\Sigma_{21}&\Sigma_{22}\end{bmatrix}) Xp=[X(1)X(2)]Np([μ(1)μ(2)],[Σ11Σ21Σ12Σ22])

分块的独立性:

  相互独立 ↔ Σ 12 = Σ 21 = O \leftrightarrow \Sigma_{12}=\Sigma_{21}=O Σ12=Σ21=O(类似二元正态)
推论:对于划分为 k k k个分量的 p p p维正态向量而言,各分量相互独立 ↔ Σ \leftrightarrow\Sigma Σ是对角分块阵

条件分布:

定义:

   F ( X ( 1 ) ∣ X ( 2 ) ) = f ( X ( 1 ) , X ( 2 ) ) f ( X ( 2 ) ) F(X^{(1)}|X^{(2)})=\frac{f(X^{(1)},X^{(2)})}{f(X^{(2)})} F(X(1)X(2))=f(X(2))f(X(1),X(2))

协差阵的逆:

   Σ − 1 = [ Σ 11 ⋅ 2 − 1 − Σ 11 ⋅ 2 − 1 Σ 12 Σ 22 − 1 − Σ 22 − 1 Σ 21 Σ 11 ⋅ 2 − 1 Σ 22 − 1 + Σ 22 − 1 Σ 21 Σ 11 ⋅ 2 − 1 Σ 12 Σ − 1 22 ] \Sigma^{-1}=\begin{bmatrix}\Sigma_{11\cdot2}^{-1} & -\Sigma_{11\cdot2}^{-1}\Sigma_{12}^{}\Sigma_{22}^{-1}\\-\Sigma_{22}^{-1}\Sigma_{21}^{}\Sigma_{11\cdot2}^{-1} & \Sigma_{22}^{-1}+\Sigma_{22}^{-1}\Sigma_{21}^{}\Sigma_{11\cdot2}^{-1}\Sigma_{12}^{}\Sigma_{-1}^{22}\end{bmatrix} Σ1=[Σ1121Σ221Σ21Σ1121Σ1121Σ12Σ221Σ221+Σ221Σ21Σ1121Σ12Σ122]
  其中, Σ 11 ⋅ 2 = Σ 11 − Σ 12 Σ 22 − 1 Σ 21 \Sigma_{11\cdot2}^{}=\Sigma_{11}^{}-\Sigma_{12}^{}\Sigma_{22}^{-1}\Sigma_{21}^{} Σ112=Σ11Σ12Σ221Σ21
   ∴ \therefore X = [ X r ( 1 ) X p − r ( 2 ) ] ∼ N p ( μ , Σ ) X=\begin{bmatrix}X^{(1)}_r\\X^{(2)}_{p-r}\end{bmatrix}\sim N_p(\mu,\Sigma) X=[Xr(1)Xpr(2)]Np(μ,Σ)
  则 ( X ( 1 ) ∣ X ( 2 ) ) ∼ N r ( μ 1 ⋅ 2 , Σ 11 ⋅ 2 ) (X^{(1)}|X^{(2)})\sim N_r(\mu_{1\cdot2},\Sigma_{11\cdot2}) (X(1)X(2))Nr(μ12,Σ112)
  其中 μ 1 ⋅ 2 , = μ ( 1 ) + Σ 12 Σ 22 − 1 ( X ( 2 ) − μ ( 2 ) ) \mu_{1\cdot2},=\mu^{(1)}+\Sigma_{12}\Sigma_{22}^{-1}(X^{(2)}-\mu^{(2)}) μ12,=μ(1)+Σ12Σ221(X(2)μ(2))
     Σ 11 ⋅ 2 = Σ 11 − Σ 12 Σ 22 − 1 Σ 21 \Sigma_{11\cdot2}^{}=\Sigma_{11}^{}-\Sigma_{12}^{}\Sigma_{22}^{-1}\Sigma_{21}^{} Σ112=Σ11Σ12Σ221Σ21

推论:

  1. X ( 1 ) X^{(1)} X(1) X ( 1 ) − Σ 12 Σ 22 − 1 X ( 2 ) X^{(1)}-\Sigma_{12}\Sigma_{22}^{-1}X^{(2)} X(1)Σ12Σ221X(2)相互独立,称 B = Σ 12 Σ 22 − 1 B=\Sigma_{12}\Sigma_{22}^{-1} B=Σ12Σ221为回归系数
  2. X ( 2 ) X^{(2)} X(2) X ( 1 ) − Σ 21 Σ 11 − 1 X ( 1 ) X^{(1)}-\Sigma_{21}\Sigma_{11}^{-1}X^{(1)} X(1)Σ21Σ111X(1)相互独立
    证明:直接通过分块矩阵的性质构造两者的协方差阵
  3. Z = [ X p Y 1 ] ∼ N p + 1 ( [ μ x μ y ] , [ Σ x x Σ x y Σ y z Σ y y ] ) Z=\begin{bmatrix}X_p\\Y_1\end{bmatrix}\sim N_{p+1}(\begin{bmatrix}\mu_x\\\mu_y\end{bmatrix},\begin{bmatrix}\Sigma_{xx}&\Sigma_{xy}\\\Sigma_{yz}&\Sigma_{yy}\end{bmatrix}) Z=[XpY1]Np+1([μxμy],[ΣxxΣyzΣxyΣyy]),记 g ( X ) = E ( Y ∣ X ) g(X)=E(Y|X) g(X)=E(YX),则对任意函数 φ ( ⋅ ) \varphi(\cdot) φ() E [ ( Y − g ( X ) ) 2 ] ≤ E [ ( Y − φ ( X ) ) 2 ] E[(Y-g(X))^2]\leq E[(Y-\varphi(X))^2] E[(Yg(X))2]E[(Yφ(X))2],即,若以均方差最小为准则,条件期望是对 Y Y Y的最佳预测。

参数估计:

随机样本阵

   X = [ X 11 . . . X 1 p . . . . . . X n 1 . . . X n p ] = [ X ( 1 ) . . . X ( n ) ] ′ X=\begin{bmatrix}X_{11}&...& X_{1p}\\...&&...\\X_{n1}&...&X_{np}\end{bmatrix}=\begin{bmatrix}X_{(1)}&...&X_{(n)}\end{bmatrix}' X=X11...Xn1......X1p...Xnp=[X(1)...X(n)]
  其中 X ( i ) X_{(i)} X(i)为简单随机样本,即每一行表示一个样本

样本统计量:

  1. 均值: X ‾ = 1 n ∑ 1 n X ( i ) = [ X ‾ 1 . . . X ‾ p ] ′ = 1 n X ′ 1 n \overline{X}=\frac{1}{n}\sum_1^n\limits X_{(i)}=\begin{bmatrix}\overline{X}_1...\overline{X}_p\end{bmatrix}'=\frac{1}{n}X'\mathbf{1}_n X=n11nX(i)=[X1...Xp]=n1X1n
  2. 离差: A = ∑ α = 1 n ( X ( α ) − X ‾ ) ( X ( α ) − X ‾ ) ′ = X ′ X − n X ‾ X ‾ ′ A=\sum_{\alpha=1}^{n}\limits(X_{(\alpha)}-\overline{X})(X_{(\alpha)}-\overline{X})'=X'X-n\overline{X}\overline{X}' A=α=1n(X(α)X)(X(α)X)=XXnXX
    S = ( a i j ) p × p S=(a_{ij})_{p\times p} S=(aij)p×p,其中 a i j = ∑ α = 1 n ( X α i − X ‾ i ) ( X α j − X ‾ j ) a_{ij}=\sum_{\alpha=1}^n\limits(X_{\alpha i}-\overline{X}_i)(X_{\alpha j}-\overline{X}_j) aij=α=1n(XαiXi)(XαjXj) X ‾ i \overline{X}_i Xi为第 i i i个变量的均值
  3. 协方差阵: S = 1 n − 1 A = ( s i j ) p × p S=\frac{1}{n-1}A=(s_{ij})_{p\times p} S=n11A=(sij)p×p S ∗ = 1 n A S^*=\frac{1}{n}A S=n1A
  4. 样本相关阵: R = ( r i j ) p × p , r i j = s i j s i i s j j = a i j a i i a j j R=(r_{ij})_{p\times p},r_{ij}=\frac{s_{ij}}{\sqrt{s_{ii}}\sqrt{s_{jj}}}=\frac{a_{ij}}{\sqrt{a_{ii}}\sqrt{a_{jj}}} R=(rij)p×p,rij=sii sjj sij=aii ajj aij

极大似然估计:

极大似然函数:

   L ( μ , Σ ) = ∏ 1 n 1 ( 2 π ) p 2 ∣ Σ ∣ 1 2 e x p [ − 1 2 ( X ( i ) − μ ) ′ Σ − 1 ( X ( i ) − μ ) ] L(\mu,\Sigma)=\prod_1^n\limits\frac{1}{(2\pi)^\frac{p}{2}|\Sigma|^\frac{1}{2}}exp[-\frac{1}{2}(X_{(i)}-\mu)'\Sigma^{-1}(X_{(i)}-\mu)] L(μ,Σ)=1n(2π)2pΣ211exp[21(X(i)μ)Σ1(X(i)μ)]
  可化为 1 ( 2 π ) n p 2 ∣ Σ ∣ n 2 e x p [ t r ( − 1 2 Σ − 1 ∑ 1 n [ ( X ( i ) − μ ) ( X ( i ) − μ ) ′ ] ) ] \frac{1}{(2\pi)^\frac{np}{2}|\Sigma|^\frac{n}{2}}exp[tr(-\frac{1}{2}\Sigma^{-1}\sum_1^n\limits[(X_{(i)}-\mu)(X_{(i)}-\mu)'])] (2π)2npΣ2n1exp[tr(21Σ11n[(X(i)μ)(X(i)μ)])]
  其中     ∑ 1 n ( X ( i ) − μ ) ( X ( i ) − μ ) ′     = ∑ 1 n [ ( X ( i ) − X ‾ + X ‾ − μ ) ( X ( i ) − X ‾ + X ‾ − μ ) ′ ]     = ∑ 1 n ( X ( i ) − X ‾ ) ( X ( i ) − X ‾ ) ′ + n ( X ( i ) − μ ) ( X ( i ) − μ ) ′     = A + n ( X ( i ) − μ ) ( X ( i ) − μ ) ′     ∵ ∑ α = 1 n ( X α i − X ‾ α ) ( X ‾ α − μ α ) = 0     ∴ ( X i − X ‾ ) ′ ( X ‾ − μ ) = 0     ∴ ( X i − X ‾ ) ( X ‾ − μ ) ′ = O     \begin{aligned}   &\sum_1^n\limits(X_{(i)}-\mu)(X_{(i)}-\mu)'\\   =&\sum_1^n\limits[(X_{(i)}-\overline{X}+\overline{X}-\mu)(X_{(i)}-\overline{X}+\overline{X}-\mu)']\\   =&\sum_1^n\limits(X_{(i)}-\overline{X})(X_{(i)}-\overline{X})'+n(X_{(i)}-\mu)(X_{(i)}-\mu)'\\   =&A+n(X_{(i)}-\mu)(X_{(i)}-\mu)'\\   \because& \sum_{\alpha=1}^n(X_{\alpha i}-\overline{X}_\alpha)(\overline{X}_\alpha-\mu_\alpha)=0\\   \therefore&(X_{ i}-\overline{X})'(\overline{X}-\mu)=0\\   \therefore&(X_{ i}-\overline{X})(\overline{X}-\mu)'=O   \end{aligned}     =  =  =      1n(X(i)μ)(X(i)μ)1n[(X(i)X+Xμ)(X(i)X+Xμ)]1n(X(i)X)(X(i)X)+n(X(i)μ)(X(i)μ)A+n(X(i)μ)(X(i)μ)α=1n(XαiXα)(Xαμα)=0(XiX)(Xμ)=0(XiX)(Xμ)=O  
  再运用迹的四则运算律可得上式

极大似然对数函数:

l n L ( μ , Σ ) = − l n [ ( 2 π ) n p 2 ∣ Σ ∣ n 2 ] − 1 2 t r Σ − 1 ∑ 1 n [ ( X ( i ) − μ ) ( X ( i ) − μ ) ′ ] ) = − l n [ ( 2 π ) n p 2 ∣ Σ ∣ n 2 ] − 1 2 t r Σ − 1 [ A + n ( X ( i ) − μ ) ( X ( i ) − μ ) ′ ] \begin{aligned} lnL(\mu,\Sigma)&=-ln[(2\pi)^\frac{np}{2}|\Sigma|^\frac{n}{2}]-\frac{1}{2}tr\Sigma^{-1}\sum_1^n\limits[(X_{(i)}-\mu)(X_{(i)}-\mu)'])\\ &=-ln[(2\pi)^\frac{np}{2}|\Sigma|^\frac{n}{2}]-\frac{1}{2}tr\Sigma^{-1}[A+n(X_{(i)}-\mu)(X_{(i)}-\mu)'] \end{aligned} lnL(μ,Σ)=ln[(2π)2npΣ2n]21trΣ11n[(X(i)μ)(X(i)μ)])=ln[(2π)2npΣ2n]21trΣ1[A+n(X(i)μ)(X(i)μ)]

求解 μ \mu μ的极大似然估计:

  对 μ \mu μ而言, l n L ( μ , Σ ) = C − 1 2 t r Σ − 1 [ A + n ( X ( i ) − μ ) ( X ( i ) − μ ) ′ ] lnL(\mu,\Sigma)=C-\frac{1}{2}tr\Sigma^{-1}[A+n(X_{(i)}-\mu)(X_{(i)}-\mu)'] lnL(μ,Σ)=C21trΣ1[A+n(X(i)μ)(X(i)μ)]
  当 n 2 t r [ Σ − 1 ( X ( i ) − μ ) ( X ( i ) − μ ) ′ ] \frac{n}{2}tr[\Sigma^{-1}(X_{(i)}-\mu)(X_{(i)}-\mu)'] 2ntr[Σ1(X(i)μ)(X(i)μ)]
  即 n 2 [ ( X ( i ) − μ ) ′ Σ − 1 ( X ( i ) − μ ) ] \frac{n}{2}[(X_{(i)}-\mu)'\Sigma^{-1}(X_{(i)}-\mu)] 2n[(X(i)μ)Σ1(X(i)μ)]最小时,似然函数取最大
  由于 Σ \Sigma Σ正定,所以最小值为 0 0 0,此时 μ = X ‾ \mu=\overline{X} μ=X

求解 Σ \Sigma Σ的极大似然估计:

  引理: B B B p p p阶正定阵,则 t r B − l n B ≥ p trB-lnB\ge p trBlnBp,当且仅当 B = I p B=I_p B=Ip时等号成立

  对 Σ \Sigma Σ来说, n 2 l n ∣ Σ ∣ + 1 2 t r ( Σ − 1 A ) \frac{n}{2}ln|\Sigma|+\frac{1}{2}tr(\Sigma^{-1}A) 2nlnΣ+21tr(Σ1A)最小时,似然函数最大。
n 2 l n ∣ Σ ∣ + 1 2 t r ( Σ − 1 A ) = n 2 [ l n ∣ Σ ∣ + t r ( Σ − 1 A n ) ] = n 2 [ − l n ∣ Σ − 1 A n ∣ + l n ∣ A n ∣ + t r ( Σ − 1 A n ) ] = n 2 [ l n ∣ A n ∣ + t r ( Σ − 1 A n ) − l n ∣ Σ − 1 A n ∣ ] ≥ n 2 [ l n ∣ A n ∣ + p ] \begin{aligned} &\frac{n}{2}ln|\Sigma|+\frac{1}{2}tr(\Sigma^{-1}A)\\ =&\frac{n}{2}[ln|\Sigma|+tr(\Sigma^{-1}\frac{A}{n})]\\ =&\frac{n}{2}[-ln|\Sigma^{-1}\frac{A}{n}|+ln|\frac{A}{n}|+tr(\Sigma^{-1}\frac{A}{n})]\\ =&\frac{n}{2}[ln|\frac{A}{n}|+tr(\Sigma^{-1}\frac{A}{n})-ln|\Sigma^{-1}\frac{A}{n}|]\\ \ge&\frac{n}{2}[ln|\frac{A}{n}|+p]\\ \end{aligned} ===2nlnΣ+21tr(Σ1A)2n[lnΣ+tr(Σ1nA)]2n[lnΣ1nA+lnnA+tr(Σ1nA)]2n[lnnA+tr(Σ1nA)lnΣ1nA]2n[lnnA+p]
  此时 Σ − 1 A n = I p \Sigma^{-1}\frac{A}{n}=I_p Σ1nA=Ip,即 Σ = A n \Sigma=\frac{A}{n} Σ=nA
   ∴ ( μ ^ , Σ ^ ) = ( X ‾ , A n ) \therefore (\hat{\mu},\hat{\Sigma})=(\overline{X},\frac{A}{n}) (μ^,Σ^)=(X,nA)

极大似然估计的性质:

重要定理:

  设 X ‾ \overline{X} X A A A分别是 p p p元正态总体的样本均值和样本离差阵,则有:

  1. X ‾ ∼ N p ( μ , 1 n Σ ) \overline{X}\sim N_p(\mu,\frac{1}{n}\Sigma) XNp(μ,n1Σ)
  2. A = ∑ 1 n − 1 Z i Z i ′ A=\sum_1^{n-1}\limits Z_iZ_i' A=1n1ZiZi,其中 Z i Z_i Zi独立同 N p ( 0 , Σ ) N_p(0,\Sigma) Np(0,Σ)分布
  3. X ‾ \overline{X} X A A A相互独立
  4. P { A > 0 } = 1 ↔ n > p P\{A>0\}=1\leftrightarrow n>p P{A>0}=1n>p
无偏性:

  可以证明 X ‾ \overline{X} X的各分量期望无偏,根据定理(2),可将 E ( A ) E(A) E(A)化为 D ( Z i ) D(Z_i) D(Zi)的求和

有效性:

  可以证明, X ‾ , A \overline{X},A XA是“最小方差”估计

相合性:

  由强大数定律可证,当 n → ∞ n\rightarrow \infin n时, X ‾ , A \overline{X},A XA是强相合估计

参数函数的极大似然估计:

定义:

  设参数向量 θ \theta θ的变化范围是 Θ ∈ ℜ k \Theta\in \real^k Θk L ( θ ) L(\theta) L(θ)是似然函数,设 ω = g ( θ ) \omega=g(\theta) ω=g(θ) Θ \Theta Θ Θ ∗ \Theta^* Θ上的Borel可测映射,其中 Θ ∗ ⊆ ℜ k \Theta^*\subseteq\real^k Θk,则对任意 ω ∈ Θ ∗ \omega\in\Theta^* ωΘ,令
     M ( ω ) = sup ⁡ θ : G ( θ ) = ω L ( θ ) M(\omega)=\sup_{\theta:G(\theta)=\omega}\limits L(\theta) M(ω)=θ:G(θ)=ωsupL(θ)
  则称 M ( ω ) M(\omega) M(ω)为函数 g ( θ ) g(\theta) g(θ)诱导出的似然函数
  若 ω ^ \hat{\omega} ω^满足 M ( ω ^ ) = sup ⁡ ω M ( ω ) M(\hat{\omega})=\sup_\omega\limits M(\omega) M(ω^)=ωsupM(ω),则称 ω ^ \hat{\omega} ω^ g ( θ ) g(\theta) g(θ)极大似然估计
  由此得到定理:若 θ ^ \hat\theta θ^ θ \theta θ的极大似然估计,则 ω ^ = g ( θ ^ ) \hat{\omega}=g(\hat\theta) ω^=g(θ^) g ( θ ) g(\theta) g(θ)的极大似然估计

  • 5
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值