详译:RESIDUAL AND PLAIN CONVOLUTIONAL NEURAL NETWORKS FOR 3D BRAIN MRICLASSIFICATION

论文题目:RESIDUAL AND PLAIN CONVOLUTIONAL NEURAL NETWORKS FOR 3D BRAIN MRI  CLASSIFICATION

    三维脑MRI分类的残差和平面卷积神经网络

Abstract:

  近年来,有许多研究将深度学习算法应用于神经成像数据。这些研究中使用的管道大多需要多个处理步骤来进行特征提取,尽管图像分类深度学习的现代进步可以为自动特征生成和更直接的分析提供强大的框架。在本文中,我们展示了如何使用残差和普通三维卷积神经网络架构跳过这些特征提取步骤来实现类似的性能。我们在阿尔茨海默病国家倡议(ADNI)3D结构MRI脑扫描数据集上展示了拟议的阿尔茨海默病分类方法与轻度认知障碍和正常对照的性能。                                     索引:MRI、阿尔茨海默病、深度学习、卷积神经网络、残差神经网络

1.Introduction

     越来越多的基于神经成像数据的机器学习研究旨在开发有助于脑MRI分类和自动体积分割的诊断工具,并了解疾病的机制,包括神经退行性疾病。最近,出现了一些将深度学习用于三维结构磁共振图像(MRI)处理的出版物,其特定算法包括使用受限Boltzmann机器的流形学习[1]到自动编码器和分类器的组合[2],以及对不同最先进方法的元分析[3]。                                                               在这些研究中,MRI分类问题通常通过复杂的多步骤管道来解决用于从标准机器学习技术(如用于分类的支持向量机或逻辑回归)之前的数据中手动生成特征和提取特征。在我们的研究中,我们开发了基于深度学习的算法,这些算法有可能通过端到端模型克服这个问题,并简化MRI分类管道。                                                                                                                                              此外,值得注意的是,与目前用于训练神经网络进行2D图像分析中的对象分类和检测的图像分类数据集相比,神经成像研究中收集的数据集通常非常小。尽管最近有一些研究旨在通过oversampling(例如[4])来克服这个问题,但在监督学习设置中,能够构建能够学习基于小数据集分类所需特征的网络架构仍然非常重要。                                                                                               在本文中,我们提出了两种不同的用于脑MRI分类的三维卷积网络结构,它们是对平面和残差卷积神经网络的修改。我们选择使用卷积神经网络来解决上述两个问题。首先,这些网络可以将局部特征概括为对象的元表示,用于图像识别或分类。其次,图像分类深度学习的现代进步,如批量归一化技术和残差网络架构,缓解了训练数据集小的问题,同时为自动特征生成提供了强大的框架。因此,我们可以将模型应用于3D MRI图像,而无需中间手工特征提取。                                         我们基于来自阿尔茨海默病神经成像倡议(ADNI)项目的数据检查了拟议网络架构的性能,该项目提供了带有标签和主题元数据的结构MRI扫描数据集。我们使用该数据集测试我们的模型在对阿尔茨海默病(AD)、早期和晚期轻度认知障碍(EMCI和LMCI)和正常队列(NC)受试者的MRI扫描进行分类的任务中的性能。                                                                                                       以前有研究使用深度学习算法对阿尔茨海默病进行分类。例如,Heung Il Suk等人[5]使用了一种复杂的深度信念网络(DBN)体系结构,该网络具有面片采样预处理,并将MRI和PET模式与网络顶部的SVM分类器加权集成相结合。预处理包括颅骨剥离和大脑切除,segarXiv:1701.06643v1[cs.CV]2017年1月23日,将其精神状态转化为灰质、白质和脑脊液(CSF),并将斑块采样为具有统计意义的体素邻域。AD\/NC、MCI\/NC和MCI-C\/MCI-NC的最终分类性能分别为.95.85.76和.99.88.75 ROC AUC。                                                                             在最近一篇关于ADNI数据分类的论文中,Ehsan Hosseini-Asl等人[6]提出使用三维卷积神经网络从磁共振成像中提取特征。更具体地说,[6]的作者使用了深度监督自适应3D-CNN(DSA-3D-CNN),通过训练卷积自动编码器进行特征提取和微调网络进行初始化,以在不同域图像上进行分类。与二元ROC AUC超过0.96的其他方法相比,它们表现出了令人印象深刻的性能。这种方法与我们提出的方法最接近,但有一些警告。虽然对于某些类型的数据,这种方法可能会产生更好的初始性能,但它在权重初始化的时间复杂度方面存在缺点。                                                                   一个重要的注意事项是,以前基于ADNI的研究报告了可用类对的二元分类结果,而不是多类分类结果。在我们的研究中,我们还测试了提出的模型在二元一对一分类任务中的性能,以便能够将我们的结果与以前的工作进行比较。我们证明,我们的方法在不进行复杂预处理或模型堆叠的情况下获得了相对良好的结果,同时在数据增强和过采样以及模型架构设计方面显示了一系列可能的进一步研究途径

2.Method

2.1 VoxCNN

      我们选择使用类似于VGG[7]的网络架构进行图像分类,以检查这种卷积网络是否能够提取三维图像分类所需的特征。                                                                                                                              我们的VoxCNN架构有四个用于提取特征的体积卷积块(滤波器的数量从一层增加到另一层),两个用于正则化的具有batchnorm和Drop的反卷积层,以及一个用于分类的具有softmax非线性的输出(见图1(a))。我们使用AdaM训练最终的二元分类模型,学习率为27∗ 10−6,batchsize为5,用于150个epoch

2.2 ResNet

     残差神经网络[8]架构在2015年的Imagenet竞赛中获胜,证明了在快速收敛的同时大大提高网络深度的可能性。已经有出版物显示了他们对三维图像分割的结果,如VoxResNet[9],其中作者使用了resnet的身份连接思想[10]。                                                                                                               我们从VoxResNet派生的ResNet架构有21层,包含六个VoxRes块,每个层有64个用于卷积的滤波器,除了最后两个,它有128个,VoxRes块之间卷积的strides是2*2*2,以减少层输出的尺寸。最后一个VoxRes块的输出被发送到池层,以进一步将其减少到2×2×2×128,然后是一个具有128个隐藏单元的全连接层,以及一个具有softmax非线性的二进制分类输出(见图1(b))。我们使用Nesterov动量训练最终的二元分类模型,学习率为10−4,batchsize为3,用于70个epoch

 

2.3 Setup

    我们每次使用5个不同的折叠分割进行5次交叉验证,以获得更好的预测性能近似值。在每次折叠中,我们针对每个分类任务对网络进行固定次数的epochs训练,以在数据集的训练子集上实现完美的类分离,并在验证子集上稳定性能指标。还需要注意的是,由于模型大小和GPU内存的限制,我们必须修改batch迭代过程,以确保每个batch中都有每个类的样本。原因是,对于无限多个样本,一个batch内只表示一个类的概率为\frac{1}{c^{b}},其中c是类的数量,b是batchsize。因此,对于大量batchsizes,这种概率很低,但在我们的情况下,这种概率很高,足以破坏学习过程的稳定性。每个batch样本的平衡为我们提供了更稳定的学习曲线

 3. Data

   本文准备中使用的数据来自阿尔茨海默病神经成像倡议(ADNI)数据(ADNI.loni.usc.edu)。因此,ADNI内的研究人员为ADNI的设计和实施做出了贡献,并/或提供了数据,但未参与本报告的分析或撰写。                                                                                                                                         在我们的实验中,我们使用ADNI结构MRI数据的子集,该数据已经过对齐和颅骨剥离预处理,标记为“空间归一化、掩蔽和N3校正T1图像”。由于有患者在一段时间内拍摄了多张图像,因此我们为了防止可能的信息“泄漏”,我们只选择为每个主题拍摄的第一张图像。结果数据集有四类共231幅图像:50例阿尔茨海默病(AD)患者、43例晚期轻度认知障碍(LMCI)、77例早期轻度认知障碍(EMCI)和61例正常队列(NC)。对于这四个类,我们有六个二进制(一对一)分类任务。所有图像都存储为110×110×110形状的三维张量中的体素强度值。

4. Results

     六个二元分类任务的结果如表1所示。该网络学习从正常队列中准确分类阿尔茨海默病受试者,但难以将其与晚期和早期轻度认知障碍的中间类别区分开来。两个网络在标准差内显示出相似的结果。

    图2显示了训练期间验证数据集的ROC AUC值。该图表明,网络分类性能不断提高,然后在第50个时期后趋于平稳。                                                                                                                        

     图3显示了通过对测试子集中的正常队列受试者使用遮挡图像[11]进行预测而产生的网络注意力示例。我们通过编译预测掩码,同时用7×7×7盒遮挡图像部分并测量输出概率的下降来生成预测掩码。此热图显示了网络如何了解这些区域的重要性。这些区域很模糊,但注意力最高的区域似乎与受阿尔茨海默病影响最大的区域相匹配,主要是海马[12]和心室[13]。

 

5. Conclusion

     我们提出了深度3D卷积神经网络架构,用于脑MRI扫描的分类任务。我们展示了基于ADNI数据集的残差和平面卷积神经网络的性能,ADNI数据集是阿尔茨海默病受试者和正常对照者结构磁共振成像的最大可用数据集。我们表明,将所提出的模型应用于MRI分类问题可以得到与以前使用的方法相当的结果。我们方法的主要优点是易于使用,不需要手工生成特征。只要我们能够自动处理颅骨剥离和归一化的传入图像,所提出的方法就应该证明对任何给定MRI扫描的动态预测是有用的。在我们未来的工作中,我们希望对未进行对齐和颅骨剥离预处理的图像获得类似或更好的结果,因为卷积神经网络在卷积后具有全局池,则对图像上对象的平移不变性。这意味着有可能对复杂的MRI数据进行一步分析,而不是目前主导该领域的多步管道。 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值