详读:Visualizing Convolutional Networks forMRI-based Diagnosis of Alzheimer’s Disease

论文题目:可视化卷积网络用于基于MRI的阿尔兹海默症诊断

摘要: 

原文:

  •   Visualizing and interpreting convolutional neural networks(CNNs) is an important task to increase trust in automatic medical decision making systems. In this study, we train a 3D CNN to detect Alzheimer’s disease based on structural MRI scans of the brain. Then, we apply four different gradient-based and occlusion-based visualization methods that explain the network’s classification decisions by highlighting relevant areas in the input image. We compare the methods qualitatively and quantitatively. We find that all four methods focus on brain regions known to be involved in Alzheimer’s disease, such as inferior and middle temporal gyrus. While the occlusion-based methods focus more on specific regions, the gradient-based methods pick up distributed relevance patterns. Additionally, we find that the distribution of relevance varies across patients, with some having a stronger focus on the temporal lobe, whereas for others more cortical areas are relevant. In summary, we show that applying different visualization methods is important to understand the decisions of a CNN, a step that is crucial to increase clinical impact and trust in computer-based decision support systems.

 重点翻译:

  • 可视化和解释卷积神经网络(CNN);本文训练了一个3D CNN来检测基于大脑结构MRI扫描的AD;通过应用四种不同的基于梯度和基于遮挡的可视化方法,通过突出显示输入图像的相关区域来解释网络的分类决策;发现:1.这四种方法集中在与AD有关的大脑区域、2.相关性的分布因患者而异,一些患者更关注颞叶,而另一些患者更关注皮层;基于遮挡的方法更多关注特定区域,基于梯度的方法提取分布式相关模式。

1. Introduction:

    The key idea behind CNNs is inspired by the mechanism of receptive fields in the primate visual cortex: Local convolutional filters and pooling operations are applied successively to extract regional information.CNN背后的关键思想受到灵长类视觉皮层感受野机制的启发:连续应用局部卷积滤波器和池运算来提取区域信息。Although CNNs deliver good classification results, they are difficult to visualize and interpret. In medical decision making, however, it is critical to explain the behavior of a machine learning model and let medical experts verify the diagnosis. A number of visualization methods have been suggested that highlight regions in an input image with strong influence on the classification decision[9,10,12,11]. Such heatmaps constitute the basis for understanding and interpreting machine learning models, optimally together with clinicians.尽管CNN提供了良好的分类结果,但它们很难可视化和解释。然而,在医疗决策中,解释机器学习模型的行为并让医学专家验证诊断至关重要。已经提出了许多可视化方法来突出输入图像中的区域,对分类决策有很大影响[9,10,12,11]。这些热图构成了与临床医生一起理解和解释机器学习模型的基础。In this work, we compare four visualization methods (sensitivity analysis,
guided backpropagation, occlusion and brain area occlusion) on a 3D CNN, which was trained to classify structural MRI scans of the brain into AD patients and normal elderly controls (NCs).在这项工作中,我们比较了3D CNN上的四种可视化方法(敏感性分析、引导反向传播、遮挡和脑区遮挡),该CNN被训练用于将大脑的结构MRI扫描分为AD患者和正常老年对照组(NCs)

 2.Related Work:

 Alzheimer Classification:

  •  

 Visualization Methods

  •  

 3.Methods

 Data:

  • Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.本文准备中使用的数据来自阿尔茨海默病神经成像倡议(ADNI)数据库 。。。。The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).ADNI的主要目标是测试序列磁共振成像(MRI)、正电子发射断层扫描(PET)、其他生物标记物、,临床和神经心理学评估可以结合起来测量轻度认知障碍(MCI)和早期阿尔茨海默病(AD)的进展。
  • For this study we used structural MRI data of patients with Alzheimer’s disease (AD) and normal controls (NC) from phase 1 of ADNI.使用来自ADNI第一阶段的AD患者和正常对照组(NC)的结构MRI数据。。。。For this study we used structural MRI data of patients with Alzheimer’s disease (AD) and normal controls (NC) from phase 1 of ADNI.我们的数据集包括来自344名受试者(193 AD,151 NC)的969次个人扫描(475 AD,494 NC)。
  • volumes of 193 × 229 × 193.
  • For training, we split this dataset using 5-fold cross validation. The split is performed on the level of patients to prevent the network from seeing images of the same patient during training and testing. For the visualization methods, we used a fixed split with 30 AD and 30 NC patients in the test set.为了进行训练,我们使用5倍交叉验证对该数据集进行分割。在患者级别上执行分割,以防止网络在训练和测试期间看到同一患者的图像。对于可视化方法,我们在测试集中使用了30名AD和30名NC患者的固定分割

 Model:

  •  模型由四个卷积层(滤波器大小为3*3*3和8/16/32/64的特征映射)和两个完全连接的层(128/64个神经元)组成。在第一个完全连接层之前,在每次卷积和0.8的dropout之后进行归一化和池化。该网络有两个具有softmax激活的输出神经元。我们使用交叉熵损失和Adam优化器(学习率0.0001,批量5)进行20个阶段的训练。在将大脑扫描送入网络之前,我们移除头骨,并对每个体素进行归一化,使其在整个训练集中具有平均值0和标准偏差1。
  • 四种可视化方法均在输入图像上生成热图,这表明图像像素与分类决策的相关性。可视化方法的PyTorch实现 http://github.com/jrieke/cnn-interpretability
  • Sensitivity Analysis (Backpropagation)灵敏度分析(反向传播):计算输入的图像,网络输出概率w.r.t.的梯度。对于给定的图像像素,该梯度描述了像素值变化时输出概率的变化程度。在神经网络中,可以通过用于训练的反向传播算法轻松计算梯度。作为相关性得分,我们取梯度的绝对值。
  • Guided Backpropagation(引导反向传播):灵敏度分析的改进版,在其反向过程中,relu层的负梯度设置为0,。这相当于反向传播和反卷积分结合,并导致更集中的热图。综上,我们将梯度的绝对值作为相关性系数。
  • Occlusion(遮挡):用黑色或灰色块遮挡图像的一部分,并重新计算网络输出。如果和原始图片相比,目标类的概率降低,则认为该图像区域相关。为了得到相关热图,我们将patch滑动到图像上,并绘制未遮挡概率和遮挡概率之间的差异(对于AD或NC)。使用大小40×40×40,值为0的patch。
  • Brain Area Occlusion(脑区遮挡):该方法为遮挡方法的改进。对整个大脑区域进行遮挡。报告了未遮挡和遮挡概率之间的差异(AD或NC)。

 

 图1:所有可视化方法的相关性热图,在测试集中的AD(顶部)和NC(底部)样本上平均。红色表示相关性,即红色区域对于网络的分类决策很重要。数字表示切片位置(229个冠状切片中)。

 4.Results

Classification:

   使用5倍交叉验证,我们的网络实现了0.77±0.06的分类精度和0.78±0.04的ROC AUC(均为       平均值±标准差)。

 Relevant brain areas:

  • 图1显示了所有可视化方法的相关性热图,在测试集中对AD和NC样本进行平均。。。通过总结每个区域的相关性(根据AAL图谱),我们确定了每个可视化方法最相关的大脑区域。表1列出了每种方法最相关的四个大脑区域,再次对AD和NC样本进行平均。
  • 对于AD和NC患者,我们可以看到网络的主要焦点是颞叶,尤其是其内侧部分。这个包含海马体和其他与记忆相关的结构的大脑区域,根据经验与AD有关[1]。海马体本身通常是受AD影响最早的区域之一[7]。在我们的实验中,我们观察到海马体上存在一些相关性,但通常它周围的整个区域对网络的决策至关重要。这可能是因为我们的样本中只含有晚期疾病。

表1 :每个可视化方法的最相关大脑区域,在测试集中的AD(顶部)和NC(底部)样本上平均。括号中的值表示该大脑区域的总相关性除以整个大脑的总相关性。

  •  除了时间区域外,我们还观察到了与大脑其他区域的相关性(尤其是在基于梯度的可视化方法中)。我们发现,相关性的分布在患者之间有所不同:一些大脑在颞叶具有很强的相关性,而在另一些大脑中,皮层起着至关重要的作用。
  • 最后,我们注意到AD和NC样本的热图非常相似。这是有道理的,因为网络应该关注相同的区域来检测疾病的存在或不存在。对于遮挡方法,可以发现AD和NC之间的一些差异我们推测这可能是我们特定设置的人为因素(该网络可能会将遮挡块与脑萎缩混淆,从而增加某些大脑区域出现AD的可能性)

 Differences between visualization methods:

  • 尽管所有可视化方法都关注于相似的大脑区域,但我们可以发现一些差异:遮挡和大脑区域遮挡更关注于特定区域,而基于梯度的方法中的相关性似乎更分散。显然,基于遮挡的方法无法处理大面积的分布相关性(例如在皮层),因为这些区域永远不会被遮挡斑块完全覆盖。因此,对于相关性可能分布在输入图像中的用例,我们建议应用基于梯度的可视化方法,而不是基于遮挡的可视化方法。此外,我们发现大脑区域遮挡确实是一种非常自然的方法,但它受到一个事实的影响,即一次只能覆盖一个大脑区域。在我们的案例中,这导致了颞叶的高度相关性,但与其他大脑结构几乎没有任何相关性。

  • 为了定量比较可视化方法,我们计算了所有平均热图之间的欧几里得距离,其中A和B是两种不同方法的平均热图,i是体素位置)。距离如表2所示。根据视觉印象,我们发现基于梯度的方法彼此相对相似(即低欧几里得距离)。唯一与其他方法有很大不同的方法是大脑区域遮挡,该方法(如上所述)仅将相关性归因于少数图像区域。表2:相关性热图之间的欧几里德距离(测试集中所有AD\/NC样本的平均值)为10−4. 

 Conclusion:

  • 在本研究中,我们训练了一个用于阿尔茨海默分类的3D CNN,并应用了各种可视化方法。我们表明,我们的CNN确实关注与AD相关的大脑区域,尤其是内侧颞叶。这在所有四种可视化方法中都是一致的。有趣的是,相关性的分布在患者之间有所不同,一些患者更关注颞叶,而另一些患者则涉及更多的皮质区域。我们希望以这种方式解释分类器决策可以为医学等关键领域的机器学习模型铺平道路,并增加对基于计算机的决策支持系统的信任。我们的结果还表明,可视化方法在解释上有所不同。因此,我们强烈建议对特定应用领域的可用可视化方法进行比较,不要“盲目”相信一种方法的结果。

  • 对于未来的研究,我们确定了三个主要方面:第一,可以实现其他可视化方法[6],并与我们的结果进行比较。其次,未来的研究可能会将我们的工作流程应用于阿尔茨海默病的先决条件,即轻度认知障碍和临床残疾的测量。第三,为相关热图生成某种形式的地面真实感是很有趣的,例如通过实现控制可分性水平或差异位置的模拟模型。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值