什么是多项式承诺?
承诺的定义:承诺是一个公共值,它与提交者提供的原始消息(计算绑定 Binding)绑定,提交者不会泄露消息(隐藏 Hiding)。证明者需要打开此承诺并将消息发送到验证者,以验证承诺与消息之间的对应关系。我们先通过一幅图来理解多项式承诺这个过程:
- 承诺生成(Commit)阶段: Prover 计算关于多项式 f ( x ) f(x) f(x) 的承诺,并将其发送给 Verifier;
- 挑战(Challenge)与证明生成: Verifier 选择一个随机数 s s s 作为挑战发送给 Prover,Prover 计算响应 f ( s ) = z f(s)=z f(s)=z ,并生成相应的证明 。
- 验证阶段: Verfier 通过之前的承诺, π \pi π 等信息验证 Prover 的确拥有 f ( x ) f(x) f(x)。
那么这里就有两个问题
1. 这个 f ( x ) f(x) f(x) 的 Commitment 究竟是什么?
我们展开这个多项式: f ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a d x d f(x) = a_0+a_1 x+a_2 x^2+...+a_d x^d f(x)=a0+a1x+a2x2+...+adxd
因为多项式的阶数为 d 阶,那么一定可以由 d+1 个不同的点构成这个多项式(这类似于两点确定一个一元二次方程),就是 d+1 个点确定 d 阶多项式。
那么我们把这些点承诺出来,是不是就唯一确定了这个多项式(承诺)
f ( z 0 ) , f ( z 1 ) , . . . , f ( z d ) → g f ( z 0 ) g f ( z 1 ) . . . g f ( z d ) f(z_0),f(z_1),...,f(z_d) \rightarrow g^{f(z_0)}g^{f(z_1)}...g^{f(z_d)} f(z0),f(z1),...,f(zd)→gf(z0)gf(z1)...gf(zd)
但是有一个问题是 d d d 非常的大, d d d 可能是 1 0 5 10^5 105,那么这样需要计算和结果大小将非常大。
有没有一种方案,能让承诺值变得更小,计算更快?
根据 Schwartz-Zippel 引理,那么我们在有限域 F p F_p Fp</