困难假设和安全模型的强弱概念解释

困难假设和安全模型的强弱概念解释

困难假设的强与弱

一个数学问题可以分成计算性的(输出解)或判定性的(输出1/0)。存在概率多项式时间(PPT)算法解决的问题我们称之为简单的,不存在PPT算法解决的问题称之为困难的。对于目前还没有已知PPT算法的问题,我们不能(无条件)证明不存在这样的算法(除非P=NP得以证明),故而我们只能「假设」这些问题是困难的,称之为「困难假设」。然后再基于这些困难假设去构造密码方案。困难假设同样可以分成计算性的(如离散对数假设,CDH)和判定性的(如DDH)。

困难假设又可以(不精确地)分为弱假设(又称标准假设) 和强假设。对于群上假设来说,一个基准假设就是「离散对数假设(DL)」。如果一个假设和DL的安全级别相当,且安全级别只和生成底层数学原语的安全参数相关,则称这样的假设为弱假设(比如说CDH)。反之,如果安全级别低于DL的安全级别,且与其他参数比如问题实例大小相关,则称这类假设为强假设(比如q-SDH)。

攻破弱困难假设的时间开销要远远大于强困难假设。弱假设相对强假设更安全可靠,所以弱困难假设要好于强困难假设。

安全模型的强与弱

密码学中,我们一般不去一一考虑一系列的攻击(比如重放攻击,共谋攻击等)去分析密码方案的安全性,而是去在一个安全模型中去写一个安全归约来证明一个方案的安全性。安全模型是对可能敌手行为的抽象,描述了给定敌手的资源以及要求敌手达到的目标。给定敌手的资源越少,对敌手的限制越少,要求敌手达到的目标越高,安全模型越强。

对于安全目标A和B(敌手资源也同理),如果满足B后的方案相比满足A的方案,可以排除的可能的攻击向量更多,剩下的可能的攻击向量更少,则称B对应的安全模型比A更强。当然越强的安全模型越难有构造方案可以达到,而一旦达到,强安全模型比弱安全模型更好(和上述安全假设强弱正相反)。一个在强安全模型中证明安全的方案我们说其满足强安全性。

以签名的两种常见安全性EUF-CMA 和SUF-CMA为例,前者只要求敌手不可伪造出对新消息 m m m的签名,后者要求敌手不可伪造出新的消息-签名对 ( m , σ ) (m,\sigma) (m,σ)。对于已有旧消息 m m m ,伪造出新的合法签名 σ \sigma σ 的攻击,对于达到前者安全性质的方案来说依然是可能的,而对于后者来说是已经被排除在外的。

弱安全模型:若敌手在其询问过程受到约束,或者必须提前向挑战者透露一些询问,则该安全模型是弱安全模型。例如,在基于身份加密的IND-sID-CPA安全模型下,敌手无法进行任何解密询问,而且必须在看到主公钥之前指定挑战的身份。

强安全模型:若敌手的询问没有限制(除平凡攻击的询问)并且敌手不需要事先向挑战者透露任何询问,那么该安全模型就是强安全模型。例如,在基于身份加密的IND-ID-CCA安全模型下,攻击者可以对挑战密文之外的任何密文进行解密询问,并且敌手无须在挑战阶段之前指定挑战身份。

例如Dan Boneh文章中提出的without random oracle下的签名方案里面的安全模型是在under a weak chosen message attack,在系统初始化时,敌手就需要向挑战者提交后面查询的签名有哪些。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在Stata中,σ收敛模型表示对数线性模型中的因变量的方差(即误差项的方差)随着解释变量的增加而变化的过程。σ收敛模型可以帮助我们理解变量之间的方差是否随着解释变量的变大或变小而增加或减少。 为了估计σ收敛模型,可以使用命令"areg"来进行固定效应模型的估计。这个命令可以估计固定效应模型解释变量对因变量方差的影响。 在Stata中,β收敛模型表示解释变量对因变量的系数估计值是否随着样本量的增加而趋于稳定。β收敛模型可以帮助我们理解解释变量对因变量的影响是否存在真正的效应,而不是仅仅是由于抽样误差所导致的。 为了估计β收敛模型,可以使用命令"reg"来进行线性回归模型的估计。通过检验系数的置信区间或进行假设检验,可以判断解释变量的系数是否具有统计显著性,并进一步判断估计值是否收敛。 总结来说,在Stata中,σ和β收敛模型可以帮助我们理解解释变量对因变量的方差和系数估计值的影响是否随着样本量的增加稳定下来。通过估计这些收敛模型,我们可以更好地理解变量之间的关系和因果关系的确定性。 ### 回答2: 在Stata软件中进行σ和β收敛模型分析是统计学中常用的方法之一。这里的σ指的是标准差,β则表示系数。σ和β收敛模型是一种多元线性回归模型,用于描述一个或多个自变量对因变量的影响程度。 对于σ收敛模型,它主要用于测量模型中的误差项与实际数据之间的偏差程度。在Stata中,我们可以使用回归命令(reg)来进行σ收敛模型分析。首先,我们需要确保自变量和因变量的数据已经加载到Stata中,并执行回归命令。命令的输出结果中会包含误差项的标准差(σ)。通过σ的大小可以判断模型的拟合优度,σ越小说明模型的拟合效果越好。 而β收敛模型则是用来分析自变量对因变量的影响程度。在Stata中,我们可以使用回归命令(reg)来计算出每个自变量对应的β系数。β系数表示因变量在自变量改变一个单位时的变化情况。β系数的正负表示相关性的方向,而β系数的数值大小则表示相关性的强弱。我们可以通过检验β系数的显著性来判断自变量对于因变量是否有统计学意义的影响。 通过对σ和β收敛模型的分析,我们能够更好地理解自变量与因变量之间的关系,并作出相应的推断和预测。同时,Stata软件提供了丰富的统计工具和命令,可以方便地进行模型分析,从而帮助研究者更深入地挖掘数据背后的信息。 ### 回答3: σ和β都是用来评估统计模型拟合效果的指标,可以在Stata中进行计算和评估。下面将分别介绍σ和β在Stata中的应用和计算方法。 σ是指残差的标准差,也被称为模型的拟合优度指标。它用来衡量模型中的观测值与模型预测值之间的差异程度。在Stata中,可以通过计算模型残差的标准差来得到σ的值。通常使用命令“predict r, residuals”计算模型残差,并使用命令“summ r”来查看残差的统计特征,其中包括标准差。 β是指模型参数的估计值,也被称为回归系数。它用来衡量自变量对因变量的影响程度。在Stata中,可以通过拟合回归模型来获取β的值。一般使用命令“regress y x”进行回归分析,其中y代表因变量,x代表自变量。回归模型的结果将包括估计的回归系数β。 通过比较不同模型的σ和β,可以评估它们的拟合效果和自变量对因变量的影响程度。一般情况下,较小的σ值表示模型具有较好的拟合效果;而较大的β值表示自变量对因变量有较大的影响。 总而言之,σ和β都是用来评估统计模型拟合效果的指标。在Stata中,可以通过计算模型的残差标准差来获得σ的值,通过拟合回归模型来获得β的值。通过比较不同模型的σ和β可以评估其拟合效果和自变量对因变量的影响程度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值