研究生阶段机器学习之logistic回归模型

前言
今天是2020/7/9,已经开始进行研究生阶段的学习了。对于新知识的学习而言,入门总是最难的。我之前从未接触过机器学习领域,因此在看周志华老师的《机器学习》这本书时,总觉得迷迷糊糊,不得要领。也就使得最近心情烦躁,学习没得效率。万幸的是在我大姐的帮助下(大姐是研究NLP方向的),终于开始渐入佳境,有所收获。为了一改以往学习边学边忘的情况,研究生阶段的学习我打算采用学习+写博客+时常回顾的方式进行。好了,废话不多说,今天就把最近学习过的logistic回归记录一下。
正文
逻辑回归(Logistics Regression)是机器学习中最常见的一种用于二分类的算法模型。主要用于二分类,也可以作用于多分类。
公式推导
所谓二分类,就是一件事要么成立,要么不成立。logistics模型就是用来判断这件事成立或者不成立的概率。那么首先我们要有足够多的训练数据,在对算法模型进行训练后,获取可靠的参数w与b,之后才能判断事件A成立或者不成立的预测概率(这里我们将预测概率称为y1,输入称为x)。
如果我们有了参数w、b,那么如何表示y1呢?y1=xw+b?不不不,这样是不准确的,由上文可知,我们需要求得的是成立或者不成立的概率,而y1=xw+b很明显图像是一条直线,其值域为正无穷到负无穷。这是不符合概率大于零小于1的原则。这个时候我们就可以使用激活函数sigmoid()来对y1=xw+b进行修改。sigmoid()函数图像如下图所示 在这里插入图片描述由图可知,sigmiod()函数的定义域为正无穷到负无穷,值域为-1到+1。因此可以把y1=xw+b求得的y1当做未知数带入到sigmoid()函数中。如此就可以表示事件发生的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值