文章目录
为了不浪费您的时间,我会在此处说明本文要讲些什么 |
您在阅读本文之前对层次分析法有些了解那是再好不过啦。 因为本文内容大多基于实例进行分析。您如果是来获取层次分 析法和模糊综合评测源码的,可以直接拉到最低,源码很好使。 思路来源于某高校数学建模题 |
一、先定个小目标
假设我们现在要做一个大学生在线学习影响因素的排序,现在我给出这么些个因素,自制力、网络条件、平台数目、家里事务、课程内容实现。
而这些个因素是较为抽象笼统的,我们进一步具体化,具体化时要注意各个因素之间仍然要保持互不相关,如下:
白制力 { 作业完成度 课堂在线率 课堂准时率 \text { 白制力 }\left\{\begin{array}{l} \text { 作业完成度 } \\ \text { 课堂在线率 } \\ \text { 课堂准时率 } \end{array}\right. 白制力 ⎩⎨⎧ 作业完成度 课堂在线率 课堂准时率
网络条件 { 使用设备 网络配置 课程平台服务器 \text { 网络条件 }\left\{\begin{array}{l} \text { 使用设备 } \\ \text { 网络配置 } \\ \text { 课程平台服务器 } \end{array}\right. 网络条件 ⎩⎨⎧ 使用设备 网络配置 课程平台服务器
平台数目 { 教师教学需求 学生课后需求 \text { 平台数目 }\left\{\begin{array}{l} \text { 教师教学需求 } \\ \text { 学生课后需求 } \end{array}\right. 平台数目 { 教师教学需求 学生课后需求
家里事务 { 辅助父母事务 家庭亲戚活动 \text { 家里事务 }\left\{\begin{array}{l} \text { 辅助父母事务 } \\ \text { 家庭亲戚活动 } \end{array}\right. 家里事务 { 辅助父母事务 家庭亲戚活动
课程内容实现 { 实践环境 可用有效资源 \text { 课程内容实现 }\left\{\begin{array}{l} \text { 实践环境 } \\ \text { 可用有效资源 } \end{array}\right. 课程内容实现 { 实践环境 可用有效资源
把以上内容整理一下,翻译成论文样式就是:
在遵循参考统计数据、文献资料、合理的设计原则上,通过文献资料分析和专家访谈,并结合所获取的全国高校统计数据情况,将大学生在线学习影响因素分为五个一级指标:①自制力;②网络条件;③平台数目;④家里事务;⑤课程内容实现。而每一个一级指标下又包含2到3个二级指标(即为不相关综合影响因素)
|
整理一下得到:
本文目标就是将二级指标进行排序,排序依据为因素的影响权重。那么如果将这种抽象的评价进行数据量化呢?
倘若避开数据不谈,你我按照自己心理的度量,也是一定能够将12个二级指标按照从重要到不重要的顺序排出来的。但可惜的是您也不知道具体,也不知道各个因素的影响差距,和他人述说这个顺序时,你也难以去说服他人,更别说是论文啦。
而层次分析法能将你心目中的抽象化为数据,咱们继续。
二、层次分析法部分
2.1 思路总括
层次分析法,顾名思义,以不同层次来进行分析,本文不画什么层次结构图,但是您若是书写论文,对原理的阐述尽量还是加上。
层次分析法分层将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层。
画个流程图:
需注意我们是将准则层给具体细分,所以此处我们实际上例子只有两层。计算时,我们先将B的权重计算出来,然后 B 1 B_1 B1、 B 2 B_2 B2、 B 3 B_3 B3、 B 4 B_4 B4、 B 5 B_5 B5。继而又将B的各个权重进行拆分。(比如 B 1 B_1 B1权重为0.4,后续的 B 11 B_{11} B11、 B 12 B_{12} B12、 B 13 B_{13} B13这里无非是对这个0.4进行拆分,也就是 B 11 B_{11} B11、 B 12 B_{12} B12、 B 13 B_{13} B13对 B 1 B_1 B1的权重)
把结构图画一下:
每构造一次两两比较矩阵即可求出后者对前者的权重,即将 B B B各个构造两两比较矩阵,即可求出准则层各项对 A A A的权重)。同理,按照我们构建的结构,对 B 11 B_{11} B11、 B 12 B_{12} B12、 B 13 B_{13} B13构造一次两两比较矩阵,可以求出 B 11 B_{11} B11、 B 12 B_{12} B12、 B 13 B_{13} B13对 B 1 B_1 B1的权重。
2.2 构造两两比较矩阵
现在正式变成论文佬,开始一本正经胡说八道 |
递阶层次结构完成建立,上下层次指标间的隶属支配关系得以确立。接下来对每一层次各因素的相关重要性给出判断,并把这些判断用数据表示出来既定量化描述,形成递阶层次结构的判断矩阵。本文使用AHP1-9标度法,如表2.2-1所示:
标度 | 含义 |
---|---|
1 | 表示两个因素相比,具有同样重要性 |
3 | 表示两个因素相比,一个因素比另一个因素稍微重要 |
5 | 表示两个因素相比,一个因素比另一个因素明显重要 |
7 | 表示两个因素相比,一个因素比另一个因素强烈重要 |
9 | 表示两个因素相比,一个因素比另一个因素极端重要 |
2、4、6、8 | 上述两相邻判断的中值 |
倒数 | A和B相比如果标度为3,那么B和A相比就是1/3 |
判断矩阵是 A H P AHP AHP中具有重要性且十分关键的一环,将相同层次的指标两两比较进行赋值,形成一个由判断系统构成的判断矩阵。相关步骤如下:
以表2.2-1的综合因素的一级指标为例,将其依照重要性转化为数值。假设指标 B 1 B_1 B1, B 2 B_2 B2, B 3 B_3 B3, B 4 B_4 B4、 B 5 B_5 B5的重要性数值分别为 a , b , c , d , e a,b,c,d,e a,b,c,d,e构造判断矩阵,指标 B 1 B_1 B1、 B 2 B_2 B2、 B 3 B_3 B3、 B 4 B_4 B4、 B 5 B_5 B5同时为判断矩阵的行和列,将其矩阵的元素设为 a i j a_{ij} aij , a i j = a i a j a_{ij}=\frac{a_{i}}{a_{j}} aij=ajai , a i a_i ai为指标 B i B_i Bi的重要性数值, a j a_j aj为指标 B j B_j Bj的重要性数值。其中 i , j = 1 , 2 , 3... n , ( n = 5 ) i,j=1,2,3...n,(n=5) i,j=1,2,3...n,(n=5), i i i 和 j j j 分别表示判断矩阵中的行数和列数。由此可得到下面表2.2-2:
a i a j \frac{a_i}{a_j} ajai | B 1 B_1 B1 | B 2 B_2 B2 | B 3 B_3 B3 | B 4 B_4 B4 | B 5 B_5 B5 |
---|---|---|---|---|---|
B 1 B_1 B1 | 1 1 1 | a b \frac{a}{b} ba | a c \frac{a}{c} ca | a d \frac{a }{d} da | a e \frac{a}{e} ea |
B 2 B_2 B2 | b a \frac{b}{a} ab | 1 1 1 | b c \frac{b}{c} cb | b d \frac{b}{d} db | b e \frac{b}{e} eb |
B 3 B_3 B3 | c a \frac{c}{a} ac | c b \frac{c}{b} bc | 1 1 1 | c d \frac{c}{d} dc | c e \frac{c}{e} ec |
B 4 B_4 B4 | d a \frac{d}{a} ad | d b \frac{d}{b} bd | d c \frac{d}{c} cd | 1 1 1 | d e \frac{d}{e} ed |
B 5 B_5 B5 | e a \frac{e}{a} ae | e b \frac{e}{b} be | e c \frac{e}{c} ce | e d \frac{e}{d} de | 1 1 1 |
同理可得二级指标的判断矩阵。
2.3 权重计算方法
本文对于权重计算采用三种不同的方法,分别是算术平均法、几何平均法以及特征值法。考虑到以往论文利用层次分析法解决实际问题时,大部分只采用其中一种方法求得权重,而不同的计算方法可能会导致实际结果有不同的偏差。为了保证结果的稳健性,本文根据三种不同的方法分别求出权重,再根据得到的权重矩阵计算各方案的得分,并进行排序和综合分析。这样最大降低了采用单一方法所产生的偏差,得出的结论将更全面、更有效。三种方法计算步骤和统一归一处理过程如下所示:
2.3.1 算术平均法求权重
将判断矩阵内所有元素按照列进行归一化处理,再将归一化的各列按行求和,最后将相加后得到的向量中的每个元素除以 n n n,即可得到权重向量 w i w_{i} wi , ( i = 1 , 2... n ) (i=1,2...n) (i=1,2...n)。
对于判断矩阵 A A A :
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right] A=⎣⎢⎢⎢⎡a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann⎦⎥⎥⎥⎤
依照上述原理利用求得的权重向量为:
ω i = 1 n ∑ j = 1 n a i j ∑ k = 1 n a k j ( i = 1 , 2 , … , n ) \omega_{i}=\frac{1}{n} \sum_{j=1}^{n} \frac{a_{i j}}{\sum_{k=1}^{n} a_{k j}} \quad(i=1,2, \ldots, n) ωi=n1j=1∑n∑k=1nakjaij(i=1,2,…,n)
2.3.2 几何平均法求权重
先将 A A A 的元素依照行相乘得到一个新的列向量,再将该新建立的向量的每个分量进行开 n n n 次方得到一个开方后的列向量,对该列向量进行归一化处理得到所需权重向量。
同样对于判断矩阵 A A A :
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right] A=⎣⎢⎢⎢⎡a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann⎦⎥⎥⎥⎤
进行几何平均法得到权重向量:
ω i = ( ∏ j = 1 n a i j ) 1 n ∑ k = 1 n ( ∏ j = 1 n a k j ) 1 n ( i = 1 , 2 , … , n ) \omega_{i}=\frac{\left(\prod_{j=1}^{n} a_{i j}\right)^{\frac{1}{n}}}{\sum_{k=1}^{n}\left(\prod_{j=1}^{n} a_{k j}\right)^{\frac{1}{n}}} \quad(i=1,2, \ldots, n) ωi=∑k=1n(∏j=1nakj)n1