层次分析法、模糊综合评测法实例分析(涵盖各个过程讲解、原创实例示范、MATLAB源码公布)

本文通过层次分析法(AHP)和模糊综合评测法,对大学生在线学习影响因素进行排序和量化评估。首先,构建层次结构图,确定各级指标权重,包括自制力、网络条件等多个因素。接着,运用算术平均法、几何平均法、特征值法计算权重,并进行一致性检验。最后,通过模糊综合评测法建立数学模型,对在线学习效率进行模糊评判,得出具体的学习效率评估值。
摘要由CSDN通过智能技术生成

为了不浪费您的时间,我会在此处说明本文要讲些什么
您在阅读本文之前对层次分析法有些了解那是再好不过啦。
因为本文内容大多基于实例进行分析。您如果是来获取层次分
析法和模糊综合评测源码的,可以直接拉到最低,源码很好使。
思路来源于某高校数学建模题

一、先定个小目标

       假设我们现在要做一个大学生在线学习影响因素的排序,现在我给出这么些个因素,自制力、网络条件、平台数目、家里事务、课程内容实现。

在这里插入图片描述

图 1-1 :在线学习影响因素

       而这些个因素是较为抽象笼统的,我们进一步具体化,具体化时要注意各个因素之间仍然要保持互不相关,如下:

 白制力  {  作业完成度   课堂在线率   课堂准时率  \text { 白制力 }\left\{\begin{array}{l} \text { 作业完成度 } \\ \text { 课堂在线率 } \\ \text { 课堂准时率 } \end{array}\right.  白制力  作业完成度  课堂在线率  课堂准时率 

 网络条件  {  使用设备   网络配置   课程平台服务器  \text { 网络条件 }\left\{\begin{array}{l} \text { 使用设备 } \\ \text { 网络配置 } \\ \text { 课程平台服务器 } \end{array}\right.  网络条件  使用设备  网络配置  课程平台服务器 

 平台数目  {  教师教学需求   学生课后需求  \text { 平台数目 }\left\{\begin{array}{l} \text { 教师教学需求 } \\ \text { 学生课后需求 } \end{array}\right.  平台数目 {  教师教学需求  学生课后需求 

 家里事务  {  辅助父母事务   家庭亲戚活动  \text { 家里事务 }\left\{\begin{array}{l} \text { 辅助父母事务 } \\ \text { 家庭亲戚活动 } \end{array}\right.  家里事务 {  辅助父母事务  家庭亲戚活动 

 课程内容实现  {  实践环境   可用有效资源  \text { 课程内容实现 }\left\{\begin{array}{l} \text { 实践环境 } \\ \text { 可用有效资源 } \end{array}\right.  课程内容实现 {  实践环境  可用有效资源 

把以上内容整理一下,翻译成论文样式就是:

在遵循参考统计数据、文献资料、合理的设计原则上,通过文献资料分析和专家访谈,并结合所获取的全国高校统计数据情况,将大学生在线学习影响因素分为五个一级指标:①自制力;②网络条件;③平台数目;④家里事务;⑤课程内容实现。而每一个一级指标下又包含2到3个二级指标(即为不相关综合影响因素)

整理一下得到:

在这里插入图片描述

图 1-2 :层次结构图

       本文目标就是将二级指标进行排序,排序依据为因素的影响权重。那么如果将这种抽象的评价进行数据量化呢?
       倘若避开数据不谈,你我按照自己心理的度量,也是一定能够将12个二级指标按照从重要到不重要的顺序排出来的。但可惜的是您也不知道具体,也不知道各个因素的影响差距,和他人述说这个顺序时,你也难以去说服他人,更别说是论文啦。
       而层次分析法能将你心目中的抽象化为数据,咱们继续。

二、层次分析法部分

2.1 思路总括

       层次分析法,顾名思义,以不同层次来进行分析,本文不画什么层次结构图,但是您若是书写论文,对原理的阐述尽量还是加上。
       层次分析法分层将决策的目标考虑的因素(决策准则)决策对象按他们之间的相互关系分成最高层中间层最低层

画个流程图:
层次分析法流程图

图 2-1 :层次分析法流程图

需注意我们是将准则层给具体细分,所以此处我们实际上例子只有两层。计算时,我们先将B的权重计算出来,然后 B 1 B_1 B1 B 2 B_2 B2 B 3 B_3 B3 B 4 B_4 B4 B 5 B_5 B5。继而又将B的各个权重进行拆分。(比如 B 1 B_1 B1权重为0.4,后续的 B 11 B_{11} B11 B 12 B_{12} B12 B 13 B_{13} B13这里无非是对这个0.4进行拆分,也就是 B 11 B_{11} B11 B 12 B_{12} B12 B 13 B_{13} B13 B 1 B_1 B1的权重)

把结构图画一下:
在这里插入图片描述

图 2-2 :分层示意图

       每构造一次两两比较矩阵即可求出后者对前者的权重,即将 B B B各个构造两两比较矩阵,即可求出准则层各项对 A A A的权重)。同理,按照我们构建的结构,对 B 11 B_{11} B11 B 12 B_{12} B12 B 13 B_{13} B13构造一次两两比较矩阵,可以求出 B 11 B_{11} B11 B 12 B_{12} B12 B 13 B_{13} B13 B 1 B_1 B1的权重。

2.2 构造两两比较矩阵

现在正式变成论文佬,开始一本正经胡说八道

       递阶层次结构完成建立,上下层次指标间的隶属支配关系得以确立。接下来对每一层次各因素的相关重要性给出判断,并把这些判断用数据表示出来既定量化描述,形成递阶层次结构的判断矩阵。本文使用AHP1-9标度法,如表2.2-1所示:

表2.2-1:AHP1-9标度表
标度 含义
1 表示两个因素相比,具有同样重要性
3 表示两个因素相比,一个因素比另一个因素稍微重要
5 表示两个因素相比,一个因素比另一个因素明显重要
7 表示两个因素相比,一个因素比另一个因素强烈重要
9 表示两个因素相比,一个因素比另一个因素极端重要
2、4、6、8 上述两相邻判断的中值
倒数 A和B相比如果标度为3,那么B和A相比就是1/3

       判断矩阵是 A H P AHP AHP中具有重要性且十分关键的一环,将相同层次的指标两两比较进行赋值,形成一个由判断系统构成的判断矩阵。相关步骤如下:
       以表2.2-1的综合因素的一级指标为例,将其依照重要性转化为数值。假设指标 B 1 B_1 B1 B 2 B_2 B2 B 3 B_3 B3 B 4 B_4 B4 B 5 B_5 B5的重要性数值分别为 a , b , c , d , e a,b,c,d,e a,b,c,d,e构造判断矩阵,指标 B 1 B_1 B1 B 2 B_2 B2 B 3 B_3 B3 B 4 B_4 B4 B 5 B_5 B5同时为判断矩阵的行和列,将其矩阵的元素设为 a i j a_{ij} aij a i j = a i a j a_{ij}=\frac{a_{i}}{a_{j}} aij=ajai a i a_i ai为指标 B i B_i Bi的重要性数值, a j a_j aj为指标 B j B_j Bj的重要性数值。其中 i , j = 1 , 2 , 3... n , ( n = 5 ) i,j=1,2,3...n,(n=5) i,j=1,2,3...n,(n=5) i i i j j j 分别表示判断矩阵中的行数和列数。由此可得到下面表2.2-2:

表2.2-2:一级指标判断矩阵表格
a i a j \frac{a_i}{a_j} ajai B 1 B_1 B1 B 2 B_2 B2 B 3 B_3 B3 B 4 B_4 B4 B 5 B_5 B5
B 1 B_1 B1 1 1 1 a b \frac{a}{b} ba a c \frac{a}{c} ca a d \frac{a }{d} da a e \frac{a}{e} ea
B 2 B_2 B2 b a \frac{b}{a} ab 1 1 1 b c \frac{b}{c} cb b d \frac{b}{d} db b e \frac{b}{e} eb
B 3 B_3 B3 c a \frac{c}{a} ac c b \frac{c}{b} bc 1 1 1 c d \frac{c}{d} dc c e \frac{c}{e} ec
B 4 B_4 B4 d a \frac{d}{a} ad d b \frac{d}{b} bd d c \frac{d}{c} cd 1 1 1 d e \frac{d}{e} ed
B 5 B_5 B5 e a \frac{e}{a} ae e b \frac{e}{b} be e c \frac{e}{c} ce e d \frac{e}{d} de 1 1 1

同理可得二级指标的判断矩阵。

2.3 权重计算方法

       本文对于权重计算采用三种不同的方法,分别是算术平均法、几何平均法以及特征值法。考虑到以往论文利用层次分析法解决实际问题时,大部分只采用其中一种方法求得权重,而不同的计算方法可能会导致实际结果有不同的偏差。为了保证结果的稳健性,本文根据三种不同的方法分别求出权重,再根据得到的权重矩阵计算各方案的得分,并进行排序和综合分析。这样最大降低了采用单一方法所产生的偏差,得出的结论将更全面、更有效。三种方法计算步骤和统一归一处理过程如下所示:

2.3.1 算术平均法求权重

       将判断矩阵内所有元素按照列进行归一化处理,再将归一化的各列按行求和,最后将相加后得到的向量中的每个元素除以 n n n,即可得到权重向量 w i w_{i} wi , ( i = 1 , 2... n ) (i=1,2...n) (i=1,2...n)

       对于判断矩阵 A A A

A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right] A=a11a21an1a12a22an2a1na2nann

       依照上述原理利用求得的权重向量为:
ω i = 1 n ∑ j = 1 n a i j ∑ k = 1 n a k j ( i = 1 , 2 , … , n ) \omega_{i}=\frac{1}{n} \sum_{j=1}^{n} \frac{a_{i j}}{\sum_{k=1}^{n} a_{k j}} \quad(i=1,2, \ldots, n) ωi=n1j=1nk=1nakjaij(i=1,2,,n)

2.3.2 几何平均法求权重

       先将 A A A 的元素依照行相乘得到一个新的列向量,再将该新建立的向量的每个分量进行开 n n n 次方得到一个开方后的列向量,对该列向量进行归一化处理得到所需权重向量。

       同样对于判断矩阵 A A A

A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right] A=a11a21an1a12a22an2a1na2nann

       进行几何平均法得到权重向量:
ω i = ( ∏ j = 1 n a i j ) 1 n ∑ k = 1 n ( ∏ j = 1 n a k j ) 1 n ( i = 1 , 2 , … , n ) \omega_{i}=\frac{\left(\prod_{j=1}^{n} a_{i j}\right)^{\frac{1}{n}}}{\sum_{k=1}^{n}\left(\prod_{j=1}^{n} a_{k j}\right)^{\frac{1}{n}}} \quad(i=1,2, \ldots, n) ωi=k=1n(j=1nakj)n1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值