【Combinatorial Games】G Is a Group

Short Games

A combinatorial game G G G is short provided that:

  • G G G is finite: it has just finitely many subpositions, and
  • G G G is loopfree: it admits no infinite run (equivalently, there is no sequence of moves proceeding from G G G that repeats a position).

The Group G \mathbb{G} G

Definition 1.1. Let G 0 ~ = 0 \tilde{\mathbb{G}_0} = {0} G0~=0, and for n ≥ 0 n \geq 0 n0 put
G n + 1 ~ = { { g L ∣ g R } : g L , g R ⊂ G n ~ } \tilde{\mathbb{G}_{n+1}} = \{\{g^L|g^R\}:g^L,g^R \subset \tilde{\mathbb{G}_{n}}\} Gn+1~={{gLgR}:gL,gRGn~}
Then a short game is an element of
G ~ = ⋃ n ≥ 0 G n ~ \tilde{\mathbb{G}} = \bigcup\limits_{n \geq0} \tilde{\mathbb{G}_{n}} G~=n0Gn~
Definition1.2. Let G G G and H H H be short games. The disjunctive sum G + H G+H G+H is defined recursively by
G + H = { G L + H , G + H L ∣ G R + H , G + H R } . G + H = \{G^L + H, G + H^L | G^R + H, G+ H ^R\}. G+H={GL+H,G+HLGR+H,G+HR}.
Proposition1.3. Disjunctive sum is commutative and associative.

Definition 1.4. Let G G G be a short game. The negative − G -G G is defined recursively by
− G = { − G R ∣ − G L } -G = \{-G^R |-G^L\} G={GRGL}
Proposition 1.5. − ( − G ) ≅ G -(-G)\cong G (G)G

Outcomes and Values

Definition 1.6. We define P L P^L PL (games that Left can win as second player), P R P^R PR(like wise for Right), N L N^L NL(games that Left can win as first player), and N R N^R NR(likewise for Right) recursively by:
G ∈ P L   i f    e v e r y    G R ∈ N L ,   G ∈ N L    i f    s o m e    G L ∈ P L G ∈ P R    i f    e v e r y    G L ∈ N R ,   G ∈ N R   i f    s o m e   G R ∈ P R . G \in P^L \ if \ \ every \ \ G^R \in N^L,\ G \in N^L\ \ if \ \ some\ \ G^L \in P^L\\ G \in P^R\ \ if\ \ every \ \ G^L \in N^R,\ G \in N^R \ if \ \ some\ G^R \in P^R. GPL if  every  GRNL, GNL  if  some  GLPLGPR  if  every  GLNR, GNR if  some GRPR.
Then
L = P L ∩ N L ,      P = P L ∩ P R , N = N L ∩ N R ,      R = P R ∩ N R . L = P^L \cap N^L, \ \ \ \ P = P^L \cap P^R,\\ N = N^L \cap N^R, \ \ \ \ R = P^R \cap N^R. L=PLNL,    P=PLPR,N=NLNR,    R=PRNR.
Definition 1.7. Let G G G and H H H be short games. Then we write
G = H    i f    o ( G + X ) = o ( H + X )    f o r    e v e r y    s h o r t    g a m e    X G = H \ \ if \ \ o(G+X) = o(H+X)\ \ for\ \ every\ \ short\ \ game\ \ X G=H  if  o(G+X)=o(H+X)  for  every  short  game  X
Proposition 1.8. = = = is an equivalence relation.

G \mathbb{G} G Is a Group

Proposition 1.10. If G = H G = H G=H, then G + J = H + J G+J = H +J G+J=H+J.

Proposition 1.11. 0 + G ≅ G 0 + G \cong G 0+GG.

Theorem 1.12. G = 0 G=0 G=0 if and only if o ( G ) = P o(G) = P o(G)=P.

Theorem 1.13. G − G = 0 G - G = 0 GG=0

Theorem 1.14. G \mathbb{G} G is an Abelian group.

Corollary 1.15. G = H G = H G=H if and only if o ( G − H ) = P o(G - H) = P o(GH)=P.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值