0-1背包问题-分支限界法(优先队列分支限界法)

问题描述

  • 给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。
  • 应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
  • 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。

算法的思想

  • 首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。
  • 在实现时,由Bound计算当前结点处的上界。在解空间树的当前扩展结点处,仅当要进入右子树时才计算右子树的上界Bound,以判断是否将右子树剪。进入左子树时不需要计算上界,因为其上界与其父节点上界相同。
  • 在优先队列分支限界法中,结点的优先级定义为:以结点的价值上界作为优先级(由bound函数计算出)

步骤

  1. 算法首先根据基于可行结点相应的子树最大价值上界优先级,从堆中选择一个节点(根节点)作为当前可扩展结点。
  2. 检查当前扩展结点的左儿子结点的可行性。
  3. 如果左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。
  4. 当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界函数约束时,才将它加入子集树和活结点优先队列。
  5. 当扩展到叶节点时,算法结束,叶子节点对应的解即为问题的最优值。

样例

 假设有4个物品,其重量分别为(4, 7, 5, 3),价值分别为(40, 42, 25, 12),背包容量W=10。将给定物品按单位重量价值从大到小排序,结果如下:

物品重量(w)价值(v)价值/重量(v/w)
144010
27426
35255
43124

上界计算
   先装入物品1,剩余的背包容量为6,只能装入物品2的6/7(即42*(6/7)=36)。 即上界为40+6*6=76

在这里插入图片描述

已第一个up为例:40+6*(10-4)=76
打x的部分因为up值已经小于等于bestp了,所以没必要继续递归了。


分析演示

在这里插入图片描述


核心代码

  • Typew c: 背包容量
  • C: 背包容量
  • Typew *w: 物品重量数组
  • Typew *p: 物品价值数组
  • Typew cw:当前重量
  • Typew cp:当前价值
  • Typep bestcp:当前最优价值
上界函数
template<class Typew, class Typep>
Typep Knap<Typew, Typep>::Bound(int i)
{// 计算上界
   Typew cleft = c - cw;  // 剩余容量
   Typep b = cp;
   // 以剩余物品单位重量价值递减序装入物品
   while (i <= n && w[i] <= cleft) {
      cleft -= w[i];
      b += p[i];
      i++;
      }
   // 装满背包
   if (i <= n) b += p[i]/w[i] * cleft;
   return b;
}

0-1背包问题优先队列分支限界搜索算法


完整代码

#include <bits/stdc++.h>
using namespace std;
class Object
{
public:
    int id;
    int weight;
    int price;
    float d;
};
class MaxHeapQNode
{
public:
    MaxHeapQNode *parent;
    int lchild;
    int upprofit;
    int profit;
    int weight;
    int lev;
};
struct cmp
{
    bool operator()(MaxHeapQNode *&a, MaxHeapQNode *&b) const
    {
        return a->upprofit < b->upprofit;
    }
};
bool compare(const Object &a, const Object &b)
{
    return a.d >= b.d;
}
int n;
int c;
int cw;
int cp;
int bestp;
Object obj[100];
int bestx[100];
void InPut()
{
    scanf("%d %d", &n, &c);
    for(int i = 1; i <= n; ++i)
    {
     scanf("%d %d", &obj[i].price, &obj[i].weight);
     obj[i].id = i;
     obj[i].d = 1.0 * obj[i].price / obj[i].weight;
    }
 
    sort(obj + 1, obj + n + 1, compare);
//    for(int i = 1; i <= n; ++i)
//        cout << obj[i].d << " ";
//    cout << endl << "InPut Complete" << endl;
}
int Bound(int i)
{
    int tmp_cleft = c - cw;
    int tmp_cp = cp;
    while(tmp_cleft >= obj[i].weight && i <= n)
    {
        tmp_cleft -= obj[i].weight;
        tmp_cp += obj[i].price;
        i++;
    }
    if(i <= n)
    {
        tmp_cp += tmp_cleft * obj[i].d;
    }
    return tmp_cp;
}
void AddAliveNode(priority_queue<MaxHeapQNode *, vector<MaxHeapQNode *>, cmp> &q, MaxHeapQNode *E, int up, int wt, int curp, int i, int ch)
{
    MaxHeapQNode *p = new MaxHeapQNode;
    p->parent = E;
    p->lchild = ch;
    p->weight = wt;
    p->upprofit = up;
    p->profit = curp;
    p->lev = i + 1;
    q.push(p);
//    cout << "加入点的信息为 " << endl;
//    cout << "p->lev = " << p->lev << " p->upprofit = " << p->upprofit << " p->weight =  " << p->weight << " p->profit =  " << p->profit << endl;
}
void MaxKnapsack()
{
    priority_queue<MaxHeapQNode *, vector<MaxHeapQNode *>, cmp > q; // 大顶堆
    MaxHeapQNode *E = NULL;
    cw = cp = bestp = 0;
    int i = 1;
    int up = Bound(1); //Bound(i)函数计算的是i还未处理时候的上限值
    while(i != n + 1)
    {
        int wt = cw + obj[i].weight;
        if(wt <= c)
        {
            if(bestp < cp + obj[i].price)
                bestp = cp + obj[i].price;
            AddAliveNode(q, E, up, cw + obj[i].weight, cp + obj[i].price, i, 1);
        }
        up = Bound(i + 1); //注意这里 up != up - obj[i].price而且 up >= up - obj[i].price
        if(up >= bestp) //注意这里必须是大于等于
        {
            AddAliveNode(q, E, up, cw, cp, i, 0);
        }
        E = q.top();
        q.pop();
        cw = E->weight;
        cp = E->profit;
        up = E->upprofit;
        i = E->lev;
    }
    for(int j = n; j > 0; --j)
    {
        bestx[obj[E->lev - 1].id] = E->lchild;
        E = E->parent;
    }
}
void OutPut()
{
    printf("最优装入量为 %d\n", bestp);
    printf("装入的物品为 \n");
    for(int i = 1; i <= n; ++i)
        if(bestx[i] == 1)
          printf("%d ", i);
}
int main()
{
    InPut();
    MaxKnapsack();
    OutPut();
}


测试样例

输入
4 10
40 4
42 7
25 5
12 3

输出
最优装入量为 65
装入的物品为
1 3

在这里插入图片描述

### 解决VMware虚拟机丢失问题 对于VMware虚拟机丢失的情况,有多种方可以尝试恢复或修复。以下是几种常见的方: #### 使用虚拟机克隆功能 当遇到虚拟机丢失的问题时,如果之前已经创建过该虚拟机的克隆副本,则可以直接利用这个副本来替代丢失的原版虚拟机[^1]。 ```bash vmware-cmd /path/to/vm.vmx clone new_vm_name.vmx fullclone ``` 这段命令展示了如何使用`vmware-cmd`工具来进行全量克隆操作。 #### 利用快照进行恢复 如果有为虚拟机制作过快照,在面对虚拟机数据损坏或者意外删除的情况下,可以通过加载最近的一个可用快照来回退至正常状态。 #### 执行备份与恢复流程 假如定期进行了虚拟机的整体备份工作,那么可以从最新的备份记录中提取并重新部署整个虚拟环境,从而达到找回丢失虚拟机的目的。 #### 尝试内置修复工具 针对某些特定类型的错误导致的虚拟机不可访问状况,还可以借助于VMware提供的专用修复程序来诊断和修正潜在的问题。不同版本的操作界面有所区别,一般会在软件内部提供类似于“修复虚拟机”的选项供用户选择执行[^2]。 #### 文件系统层面处理 考虑到可能是由于物理主机突然断电等原因造成的Linux内核下的LVM XFS文件系统的破坏进而影响到了虚拟机的状态,此时应当先对外部存储介质上的分区表以及超级块等元数据结构实施必要的校验和重建措施后再考虑进一步的动作[^3]。 #### 检查网络配置一致性 有时虚拟机看似消失不见实则是因为其绑定的网络接口发生了变动所致;因此有必要确认宿主机端无线局域网适配器(WLAN)同虚拟平台中的对应组件之间是否存在匹配关系,并作出相应调整以确保两者同步一致[^4]。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值