
李宏毅机器学习
文章平均质量分 94
也可以去我的网站看:https://blog.codekiller.top/categories
迷雾总会解
我来,我见,我征服!
展开
-
机器学习思维导图
原创 2020-12-19 15:05:30 · 1021 阅读 · 2 评论 -
机器学习-63-Structured Learning-04-Sequence Labeling Problem(结构化学习-序列标注(HMM,CRF))
本章学习另一种结构化学习的方法—序列标注。也是结构化学习的最后一块内容!主要讲到了HMM,CRF,以及对前面学习的结构化支持向量机,结构化SVM在序列生成里面的应用!原创 2021-01-29 22:48:37 · 819 阅读 · 2 评论 -
机器学习-62-Structured Learning-03-Structured Support Vector Machine(结构化学习-结构化支持向量机)
本篇文章主要讲的是结构化的SVM,并且对结构化里面的一些基本理论和概念做一些基本介绍。根据这些概念,我们可以深刻的理解结构化的思想!以及对结构化SVM的基本认识!原创 2021-01-29 22:41:52 · 628 阅读 · 0 评论 -
机器学习-61-Structured Learning-02-Structured Linear Model(结构化学习-线性模型)
在结构化学习中,线性模型是一个很重要的模型,我们接下来的内容很多都是基于线性模型来说的原创 2021-01-29 22:34:21 · 353 阅读 · 0 评论 -
机器学习-60-Structured Learning-01-Introduction(结构化学习-介绍)
本文是结构化学习的开端,简单介绍一下结构化学习的概念以及要解决的三个问题!原创 2021-01-29 22:29:34 · 1418 阅读 · 0 评论 -
机器学习-59-Support Vector Machine(SVM,支持向量机)
支持向量机(SVM)有两个特点:SVM=铰链损失(Hinge Loss)+核技巧(Kernel Method)。本文就这两个特点的原理进行深度剖析!原创 2021-01-29 22:18:26 · 691 阅读 · 0 评论 -
机器学习-58-Ensemble(集成学习:Bagging,Random Forest,Boostring,Adaboost,Gradient Boosting,Stacking)
Ensemble的方法就是一种团队合作,好几个模型一起上的方法。本文主要介绍的方法有:Bagging,Random Forest,Boostring,Adaboost,Gradient Boosting,Stacking原创 2021-01-26 17:20:13 · 664 阅读 · 0 评论 -
机器学习-57-Unsupervised Learning-09-More about Auto-Encoder(无监督学习之更多有关自编码器的介绍)
Auto-encoder是一个基本的生成模型,更重要的是它提供了一种encoder-decoder的框架思想,广泛的应用在了许多模型架构中。简单来说,Auto-encoder可以看作是如下的结构,它主要包含一个编码器(Encoder)和一个解码器(Decoder),通常它们使用的都是神经网络。Encoder接收一张图像(或是其他类型的数据,这里以图像为例)输出一个vector,它也可称为Embedding、Latent Representation或Latent code,不管它叫什么,我们只需要知道它是关原创 2021-01-25 21:50:05 · 608 阅读 · 0 评论 -
机器学习-56-RL-08-Imitation Learning(强化学习-模仿学习)
Imitation learning(模仿学习) 讨论的问题是:假设我们连 reward 都没有,那要怎么办呢?Imitation learning 又叫做 learning from demonstration(示范学习) ,apprenticeship learning(学徒学习),learning by watching(观察学习)原创 2021-01-25 20:10:12 · 3425 阅读 · 0 评论 -
机器学习-55-RL-07-Sparse Reward(强化学习-稀疏奖励:Reward Shaping,Curriculum Learning,Hierarchical RL)
实际上用 reinforcement learning learn agent 的时候,多数的时候 agent 都是没有办法得到 reward 的。在没有办法得到 reward 的情况下,训练 agent 是非常困难的。我们可以通过三个方向来解决 sparse reward 的问题:Reward Shaping,Curriculum Learning,Hierarchical Rl。原创 2021-01-25 12:10:06 · 1994 阅读 · 0 评论 -
机器学习-54-RL-06-Actor-Critic(强化学习-A2C,A3C,Pathwise Derivative Policy Gradient)
演员-评论家算法(Actor-Critic Algorithm)是一种结合策略梯度和时序差分学习的强化学习方法。在 Actor-Critic 算法 里面,最知名的方法就是 A3C(Asynchronous Advantage Actor-Critic)。原创 2021-01-23 22:45:07 · 733 阅读 · 0 评论 -
机器学习-53-RL-05-Q-Learning for Continuous Actions(强化学习-Q学习处理连续动作的四个方法)
Q-learning 有什么问题呢?最大的问题是它不太容易处理 continuous action。很多时候 action 是 continuous 的。本文章会详细介绍解决问题的四种方法!原创 2021-01-23 16:16:56 · 1222 阅读 · 1 评论 -
机器学习-52-RL-04-Tips of Q-Learning(强化学习-Q学习的一些技巧:Double DQN&Dueling DQN&Prioritized Reply&Multi-step等)
本片文章要讲的是训练 Q-learning 的一些 tips:Double DQN,Dueling DQN,Prioritized Reply,Multi-step(Balance between MC and TD),Noisy Net(on Action vs on Q-function),Distributional Q-function,Rainbow原创 2021-01-23 15:39:43 · 1476 阅读 · 0 评论 -
机器学习-51-RL-03-Q-learning(强化学习-Q学习)
Q-learning 是 value-based 的方法。在 value-based 的方法里面,我们学习的不是策略,我们要学习的是一个 critic(评论家)。 critic要做的事情是评价现在的行为有多好或是有多不好。假设有一个actor(演员) π,critic就是来评价这个actor的策略 π 好还是不好,即 Policy Evaluation(策略评估)。原创 2021-01-22 22:11:10 · 1124 阅读 · 1 评论 -
机器学习-50-RL-02-Proximal Policy Optimization(强化学习-PPO-近端策略优化)
Proximal Policy Optimization,简称PPO,即近端策略优化,是对Policy Graident,即策略梯度的一种改进算法。PPO的核心精神在于,通过一种被称之为Importance Sampling的方法,将Policy Gradient中On-policy的训练过程转化为Off-policy,即从在线学习转化为离线学习,某种意义上与基于值迭代算法中的Experience Replay有异曲同工之处。通过这个改进,训练速度与效果在实验上相较于Policy Gradient具有明显提原创 2021-01-22 13:02:58 · 1132 阅读 · 0 评论 -
机器学习-49-RL-01-Deep Reinforcement Learning(强化学习-强化学习的基本介绍 & Policy-based方法的基本介绍)
2015年2月的时候,google在nature上发了一篇用reinforcement learning 的方法来玩akari的小游戏,然后痛鞭人类2016的春天,又有大家都耳熟能详的alpha go,也是可以痛鞭人类David Silver 说 AI 就是 Reinforcement Learning+Deep Learning Deep Reinforcement Learning : AI = RL + DL原创 2021-01-21 23:00:04 · 1517 阅读 · 1 评论 -
机器学习-48-Life-long Learning(终生学习)
我们是否可以只用一个网络结构(注意,这里的网络结构并非是固定的。也许随着任务的需要,得自行扩展网络),在不同的任务上分别训练,使得该网络能够胜任所有的任务呢? 这就是Life-long learning 所要研究的课题。原创 2021-01-20 20:43:39 · 6370 阅读 · 2 评论 -
机器学习-47-ML-03-Metric-based Approach & Train+Test as RNN(元学习-support set和query set用于同一网络的方法)
我们有一个更疯狂的想法,能不能直接learn一个function,这个function既做了Learning,又做了Prediction。给它Training Data,它就learn好了;给它Testing Data,它就给出Testing Data的答案!原创 2021-01-20 13:56:13 · 3446 阅读 · 4 评论 -
机器学习-46-ML-02-Gradient Descent as LSTM(元学习-用LSTM做Gradient Descen)
上次说到meta learning是在训练一个learning algorithm。使用的方法是梯度下降,这次我们研究如何将这个learning algorithm看作是一个LSTM,我们通过训练这个LSTM网络来实现我们的meta learning。原创 2021-01-19 20:17:38 · 935 阅读 · 0 评论 -
机器学习-45-ML-01-Meta Learning(元学习)
元学习,meta-learning,又叫learning to learn,直译即为学习如何学习,从中文字面上来理解,似乎这类算法更接近人类的学习方式——触类旁通,举一反三。而传统的深度学习方法虽然功力强大,但是框架无外乎都是从头开始学习(训练),即learning from scratch,对算力和时间都是更大的消耗和考验。原创 2021-01-19 15:03:00 · 1510 阅读 · 1 评论 -
机器学习-44-Transfer Learning(迁移学习)
迁移学习指的就是,假设你手上有一些跟你现在要进行的task没有直接相关的data,那你能不能用这些没有直接相关的data来帮助我们做一些什么事情。比如说:你现在做的是猫跟狗的classifer,那所谓没有什么直接相关的data是什么意思呢?没有什么直接相关其实是有很多不同的可能。比如说input distribution 是类似的(一样时动物的图片),但是你的label是无关的(domain是类似的,task是不像的)。还有另外的一个可能是:input domain是不同的,但是task是相同的(猫跟狗的分原创 2021-01-18 16:05:15 · 1980 阅读 · 0 评论 -
机器学习-43-GAN-10-Evaluation(如何评价GAN模型,GAN的总结)
本文是GAN的最后一块内容,就是如何Evaluation一个GAN模型。说人话:如何评价GAN生成的图片好还不好。另外一个方面是:是否客观,因为虽然人评价结果比较准确,但是人容易受主观影响,尤其发在论文上的图片,作者肯定不会把很烂的结果摆出来。原创 2021-01-17 16:05:31 · 1883 阅读 · 1 评论 -
机器学习-42-GAN-09-Improving Sequence Generation by GAN(通过GAN提高Sequence的生成)
这篇文章主要是说Improving Sequence Generation by GAN,讲GAN在sequence generator上的应用。sequence generator的应用很多,比如机器翻译,人机对话,甚至强化学习也算是sequence generator。使用GAN进行sequence generator主要有两大部分,分别是Conditional Sequence Generation 和Unsupervised Conditional Sequenc原创 2021-01-17 13:47:02 · 822 阅读 · 1 评论 -
机器学习-41-GAN-08-Intelligent Photo Editing(智能修图,GAN+Autoencoder)
本文主要是介绍基于GAN+Autoencoder来进行智能修图。还简单介绍了高清图片处理以及图像补全技术原创 2021-01-16 15:11:42 · 1265 阅读 · 0 评论 -
机器学习-40-GAN-07-Feature Extraction(InfoGAN,VAE-GAN,BiGAN,Feature Disentangle(Voice Conversion))
本节主要介绍InfoGAN,VAE-GAN,BiGAN和Triple GAN,可以用于做feature extraction。还介绍了Domain-adversarial training,Voice Conversion(声音转换)以及Feature Disentangle(特征解耦)。原创 2021-01-16 00:04:13 · 1374 阅读 · 1 评论 -
机器学习-39-GAN-06-Tips for Improving GAN(改善GAN的技巧:WGAN,WGAN-GP,EBGAN,LSGAN)
这篇文章要说的是对传统的GAN进行的一些优化,为了使GAN更容易训练。比如WGAN,它在原始的GAN上面做了几点改动,成功地提升了原始GAN的表现。还有WGAN-GP,EBGAN和LSGAN。原创 2021-01-15 10:55:33 · 824 阅读 · 0 评论 -
机器学习-38-GAN-05-General Framework of GAN(fGAN,GAN的一般框架)
之前在讲GAN的时候,提到我们实际是在用Discriminator来衡量两个数据的分布之间的JS divergence,那能不能是其他类型的divergence来衡量真实数据和生成数据之间的差距?又如何进行衡量?(虽然在实作上用不同divergence结果没有很大差别)原创 2021-01-14 19:53:54 · 1108 阅读 · 0 评论 -
机器学习-37-GAN-04-Unsupervised Condition GAN(无监督有条件GAN:Direct Transformation,Projection to Comon Space)
之前讲的那篇CGAN都是有监督学习,那能不能无监督学习呢?当然可以啦,大多数情况我们很难弄到一个个对应匹配的数据,比如做图片风格转换,你很难弄到同一个图片的不同种风格,里面东西还是一模一样的,再比如,你很难把一个人的声音风格转换到另外一个人声音上,因为可能你说的是中文,另外一个人说英文,找不到一模一样的发音,所以我们需要研究无监督学习,只需要两堆数据,可将某种特征从一堆转到另一堆。原创 2021-01-14 16:11:36 · 1563 阅读 · 0 评论 -
机器学习-36-GAN-03-Conditional GAN(有条件的GAN)
Conditional,意思是条件,所以 Conditional GAN 的意思就是有条件的GAN。Conditional GAN 可以让 GAN 产生的结果符合一定的条件,即可以通过人为改变输入的向量(记不记得我们让生成器生成结果需要输入一个低维向量),控制最终输出的结果。原创 2021-01-14 16:09:22 · 9111 阅读 · 4 评论 -
机器学习-35-GAN-02-Theory behind GAN(GAN背后的数学理论)
生成式对抗网络(Generative Adversarial Network,又称GAN,一般读作“干!”)计算机科学领域里是一项非常年轻的技术,2014年才由伊安·好伙伴教授(Ian Goodfellow,这姓氏实在是太有趣以至于印象深刻)系统地提出。但是一经提出,就引发了学术界对GAN如火如荼的研究,同时在最原始的GAN的基础上,针对不同的应用场景提出了许多GAN的变体。使用GAN网络,输入已知数据,计算机可以学习并创建全新的合成数据。Facebook AI部长Yann LeCun对GAN的评价是"Ge原创 2021-01-14 16:01:31 · 1256 阅读 · 0 评论 -
机器学习-34-GAN-01-Generative Adversarial Network(GAN,生成式对抗网络)
生成式对抗网络(Generative Adversarial Network,又称GAN,一般读作“干!”)计算机科学领域里是一项非常年轻的技术,2014年才由伊安·好伙伴教授(Ian Goodfellow,这姓氏实在是太有趣以至于印象深刻)系统地提出。但是一经提出,就引发了学术界对GAN如火如荼的研究,同时在最原始的GAN的基础上,针对不同的应用场景提出了许多GAN的变体。使用GAN网络,输入已知数据,计算机可以学习并创建全新的合成数据。Facebook AI部长Yann LeCun对GAN的评价是"Ge原创 2021-01-14 15:58:34 · 2015 阅读 · 0 评论 -
机器学习-33-Anomaly Detection(异常侦测)
Anomaly Detection,翻译为中文意思是异常侦测,异常侦测要做的就是:让机器可以知道我不知道这件事。上面引用了《论语,论证》篇,“知之为知之,不知为不知,是知也(知道就是知道,不知道就是不知道,这样才是真正的知道)”,就是让机器知道它不知道这件事原创 2021-01-12 16:23:38 · 4195 阅读 · 0 评论 -
机器学习-32-ELMO、BERT、GPT
ELMO、BERT、GPT背景机器是如何理解我们的文字的呢?最早的技术是1-of-N encoding,把每一个词汇表示成一个向量,每一个向量都只有一个地方为1,其他地方为0。但是这么做词汇之间的关联没有考虑,因为不同词之间的距离都是一样的。所以,接下来有了word class的概念,举例说dog、cat和bird都是动物,它们应该是同类。但是动物之间也是有区别的,如dog和cat是哺乳类动物,和鸟类还是有些区别的。后来有了更进阶的想法,称作word embedding,我们用一个向量来表示一个单.原创 2021-01-11 16:48:16 · 997 阅读 · 0 评论 -
机器学习-31-Transformer详解以及我的三个疑惑和解答
Transformer的Decoder的输入输出都是什么?Shifted Right到底是什么?Transformer里decoder为什么还需要seq mask?原创 2020-12-31 14:43:24 · 10005 阅读 · 6 评论 -
机器学习-30-Recursive Network(递归网络)
文章目录Recursive NetworkApplication: Sentiment Analysis(应用:情节分析)Recursive NetworkRecursive Network Tensor NetworkMatrix-Vector Recursive Network.Tree LSTMMore Application(更多应用:句子关联)Recursive NetworkApplication: Sentiment Analysis(应用:情节分析)Recursive Network原创 2020-12-30 17:40:34 · 969 阅读 · 0 评论 -
机器学习-29-Pointer Network(指针网络)
文章目录Pointer Network简介Pointer NetworkApplications-Summarization(应用:文章内容总结)背景介绍使用Pointer-Generator网络的文本摘要方法赋予seq2seq模型复制能力——CopyNet使用多来源Pointer Network的产品标题摘要方法Applications-Machine Translation(应用:机器翻译)Applications-Chat-bot(应用:对话)总结参考文献Pointer Network简介问题原创 2020-12-30 17:39:27 · 11831 阅读 · 6 评论 -
机器学习-28-Conditional Generation by RNN&Attention(条件生成和注意力机制)
文章目录GenerationConditional GenerationAttentionDynamic Conditional GenerationMachine TranslationSpeech RecognitionImage Caption Generation(图片字幕生成)Memory Network(在Memory上做attention)Neural Turing Machine(神经图灵机)Tips for GenerationAttention的正则化Mismatch between T原创 2020-12-29 20:47:29 · 1091 阅读 · 0 评论 -
机器学习-27-Network Compression( 网络压缩)
文章目录Network Pruning(修剪)INTRODUCTIONWhy PruningLottery Ticket Hypothesis(大乐透假说)Rethinking the Value of Network PruningPractical IssueKnowledge Distillation(知识蒸馏)Student and TeacherEnsemble(合奏)TemperatureParameter Quantization(参数量化)less bitsweight clustering原创 2020-12-29 15:36:43 · 1272 阅读 · 0 评论 -
机器学习-26-Attack ML Model and Defense(模型攻防)
神经网络不仅是要用在研究上,最后更多的肯定要在各种有意义的应用中。因此model仅仅是对杂讯(噪声)robust和大部分时间work是不够的,还要去对抗恶意攻击(注意,这里不是说仅仅是对抗杂讯,而是所谓的,不暴露出弱点)。即使是垃圾邮件识别,人脸识别这种最基础广泛的领域,也存在着大量的攻击对抗。因此,对这方面的研究是十分重要的。原创 2020-12-20 17:34:03 · 1434 阅读 · 0 评论 -
机器学习-25-Explainable ML(可解释机器学习)
所谓的可解释性其实也分为两种,一种是局部可解释性,一般指的是机器说明如何判断这个样例(例如分类问题中,机器如何将一张猫的图片分成猫);另一种是全局可解释性,一般指的是机器如何对总体进行特征判断(例如分类问题中,机器认为猫长什么样子)为什么我们需要这种可解释性呢?神经网络一般都是黑盒算法这确实,但并不是黑盒本身让我们难受,因为我们人的大脑也是个黑盒;而是如果我们没有一定的解释的话,我们可能会不爽。就例如一个神经网络来计算成绩,如果你分低还不知道为什么,那绝对会不爽,而如果机器能够解释每道题扣了多少分这种等原创 2020-12-19 14:18:45 · 706 阅读 · 1 评论