高等工程数学--第一篇矩阵理论归纳

 

目录

1.矩阵性质概念

1.1 符号

1.2 矩阵类型

1.3 矩阵运算

1.4 矩阵的多项式分解

1.5 正规矩阵列表:

判断是否是线性空间:

线性相关:

向a在基ξ1,ξ2,ξ3下的坐标:

维数定义:

两组基的关系式:

基的坐标变换公式:

维数:

线性变换的矩阵表是:

欧氏空间满足条件:

Schmidt正交化:

内积空间同构满足条件:

V上的正交变换:

酉空间:

酉空间内积:

酉空间线性变换:

酉矩阵正规矩阵:

酉矩阵相似对角化:

Hermite矩阵:

行列式因子:

不变因式:

初级因子:

约当标准型:

矩阵函数(复合):

矩阵范数:

向量范数:

参考书目:


1.矩阵性质概念

1.1 符号

R—实数集,C—复数集

1.2 矩阵类型

1.3 矩阵运算

1.4 矩阵的多项式分解

方法为:->>>>>

1.5 正规矩阵列表:

判断是否是线性空间:

线性相关:

向a在基ξ1,ξ2,ξ3下的坐标:

维数定义:

基的个数。

两组基的关系式:

其中:基与基中不变的关系:

基的坐标变换公式:

维数:

相当于秩

线性变换的矩阵表是:

先求两个基的过渡矩阵C即图中的A:

欧氏空间满足条件:

Schmidt正交化:

内积空间同构满足条件:

V上的正交变换:

酉空间:

酉空间内积:

酉空间线性变换:

酉矩阵正规矩阵:

酉矩阵相似对角化:

Hermite矩阵:

行列式因子:

设 λE-A 为 A 的特征矩阵 记 A(λ)。简记:A(λ) = |λE-A|。

Dk(λ)为行列式因子。 =  A(λ)所有非零的k级子式最高次项系数为1的最大公因式。

比如:A矩阵行列数为n,则求得(建议通过行列变换,简化,除对角线都为0)

|A|的表达式,此时为n级,只有一个,最大公因式为自己。

n-1 的行列式,此时为n-1级,会有几种,最大公因式为比较这几个表达式的公因式。

不变因式:

初级因子:

选择不变因子中幂大于1的(即有λ的)。每个括号为一种。

约当标准型:

步骤:

比如矩阵A=
[ 2 3 2]
[ 1 8 2]
[-2 -14 -3]

方法一:

方法二:

书上解释:

矩阵函数(复合):

矩阵范数:

向量范数:

向量的2-范数:{\left\| X \right\|_2} = {\left( {\sum\limits_{i = 1}^n {​{x_i}^2} } \right)^{\frac{1}{2}}} = \sqrt {\sum\limits_{i = 1}^n {​{x_i}^2} };每个元素的平方和再开平方根;

 

参考书目:

高等工程数学第三版》 主编: 姚仰新 王福昌 罗家洪 庄楚强

课后答案讲解

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌新待开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值