通俗解释:
先想象一下高斯分布,例如二维中,它是一条钟型线。如果数据满足高斯分布,确实可以通过已知的数据点建立一条高斯分布线,来预测未知的点。
那么高斯过程,只是将高斯分布的均值和方差定值变成了函数形式,它也是已知点来预测未知点,例如在二维空间:每个x点都有一个纵向的高斯分布,那么预测的每个未知点变成了一个高斯分布。最终高斯过程形成了数以千计的若干个预测线,即下方红色区域,不再是单纯的一条线了。
公式:
已知初始点 ,通过新点
来更新高斯过程:
截取论文中的定义:
通俗解释:
先想象一下高斯分布,例如二维中,它是一条钟型线。如果数据满足高斯分布,确实可以通过已知的数据点建立一条高斯分布线,来预测未知的点。
那么高斯过程,只是将高斯分布的均值和方差定值变成了函数形式,它也是已知点来预测未知点,例如在二维空间:每个x点都有一个纵向的高斯分布,那么预测的每个未知点变成了一个高斯分布。最终高斯过程形成了数以千计的若干个预测线,即下方红色区域,不再是单纯的一条线了。
公式:
已知初始点 ,通过新点
来更新高斯过程:
截取论文中的定义: