Gaussian process (高斯过程)

通俗解释:

先想象一下高斯分布,例如二维中,它是一条钟型线。如果数据满足高斯分布,确实可以通过已知的数据点建立一条高斯分布线,来预测未知的点。

那么高斯过程,只是将高斯分布的均值和方差定值变成了函数形式,它也是已知点来预测未知点,例如在二维空间:每个x点都有一个纵向的高斯分布,那么预测的每个未知点变成了一个高斯分布。最终高斯过程形成了数以千计的若干个预测线,即下方红色区域,不再是单纯的一条线了。

公式:

已知初始点 X,通过新点X^* 来更新高斯过程:

截取论文中的定义:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌新待开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值