【数理基础】Gaussian Process(GP)高斯过程与Gaussian Process Regression(GPR)高斯过程回归

目录

0 参考资料

1 高斯过程定义

2 高斯过程回归(Gaussian Process Regression)


0 参考资料

[1] 文字资料:Gaussian Processes for Machine Learning

[2] 视频讲解:机器学习-白板推导系列(二十)-高斯过程GP(Gaussian Process)(目测视频中的内容也是借鉴的上面的文字资料,不过通过讲解可能更好懂一些,视频中完整讲述了高斯过程回归的weight space view和function space view,两者完全等价,我在博客中只讲解后者,因为后者更直接明了)

1 高斯过程定义

假设T是一个连续域,对于T中的每一个点t_i,都有一个其对应的变量\xi _i

如果我们任意选取一组点t_{1}, t_{2},...,t_{n}\in T,都有对应变量\{\xi _{t_{1}}, \xi _{t_{2}},...,\xi _{t_{n}}\}的联合分布服从多维高斯分布N(\mu_{t},\Sigma_{t})(注意当只选取一个点时则服从一维高斯分布),那么就将\{\xi _{t}\}_{t\in T}称为一个高斯过程。

由于T是连续域,可以随机去任意多点,因此可以看做是在这个连续域上的无限维高斯分布。

在实际采样时,我们无法采样无限多的点,因此假设我们每次采样的位置是t_{1}, t_{2},...,t_{n}\in T注意每个点对应的是一个随机变量而不是一个具体的值,因此如果我们要对一个GP在这一组点上进行采样,每次随机变量对应的值不一定相同,即每次都是从该随机变量服从的高斯分布中采样一个值。

可以认为高斯过程由两个函数确定,即GP(m(t), K(t,s)),其中m(t)=E[\xi _t]是均值函数,K(t,s)=E[(\xi _t-m(\xi _t))(\xi _s-m(\xi _s))]是协方差函数

2 高斯过程回归(Gaussian Process Regression)

高斯过程可以被看作是对函数的分布的定义,将函数f(x)看做随机变量,则有f(x)\sim GP(m(x),K(x,x')),其中输入x\in \mathbb{R}^{p}

对应有m(x)=E[f(x)]K(x,x')=E[(f(x)-m(x))(f(x')-m(x'))]


考虑回归问题

现有完整数据\{(x_i,y_i)\}_{i=1}^N,令X=(x_1,x_2,...,x_N)^T_{N\times p},Y=(y_1,y_2,...,y_N)^T_{N\times 1}

f(X)=(f(x_1),f(x_2),...,f(x_N))^T_{N\times 1}\sim N(\mu(X),K(X,X))

则有Y=f(X)+\varepsilon \sim N(\mu(X),K(X,X)+\sigma^2I ),其中\varepsilon\sim N(0,\sigma ^2)是随机噪声。

新数据(用于预测)X^*=(x_1^*,x_2^*,...,x_M^*)^T_{M\times p}

根据Y^*=f(X^*)+\varepsilon,我们只要求出f(X^*)即可。


先写出现有数据(完整数据,用于训练)和新数据(用于预测)的联合概率分布

\begin{bmatrix}Y \\ f(X^*) \end{bmatrix}\sim N(\begin{bmatrix}\mu(X) \\ \mu(X^*) \end{bmatrix},\begin{bmatrix} K(X,X)+\sigma ^2I & K(X,X^*)\\K(X^*,X) &K(X^*,X^*) \end{bmatrix})

我们要求的是P(f(X^*)|Y,X,X^*)=N(\mu^*_f,\Sigma ^*_f)


有如下公式

x\sim N(\mu,\Sigma),x=\begin{pmatrix} x_a\\x_b \end{pmatrix},\mu=\begin{pmatrix} \mu_a\\\mu_b \end{pmatrix}, \Sigma=\begin{pmatrix} \Sigma_{aa} & \Sigma_{ab}\\\Sigma_{ba} & \Sigma_{bb} \end{pmatrix}

x_b|x_a\sim N(\mu_{b|a},\Sigma_{b|a})

\mu_{b|a}=\Sigma_{ba}\Sigma_{aa}^{-1}(x_a-\mu_a)+\mu_b

\Sigma_{b|a}=\Sigma_{bb}-\Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab}


代入公式

\mu^*_f=K(X^*,X)(K(X,X)+\sigma ^2I)^{-1}(Y-\mu(X))+\mu(X^*)

\Sigma ^*_f=K(X^*,X^*)-K(X^*,X)(K(X,X)+\sigma ^2I)^{-1}K(X,X^*)

这是f(X^*)的后验分布,也即无噪声情况下Y^*的后验分布。

当有噪声\varepsilon\sim N(0,\sigma ^2)时,P(Y^*|Y,X,X^*)=N(\mu^*_{Y^*},\Sigma ^*_{Y^*})

\mu^*_{Y^*}=\mu^*_f,\Sigma ^*_{Y^*}=\Sigma^*_f+\sigma ^2I

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值