→This is the question [Submit]
炮兵阵地
Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。 Input 第一行包含两个由空格分割开的正整数,分别表示N和M; Output 仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。 Sample Input Sample Output
|
这是一道中文题,题意都在上面了,这是一道经典的状压dp题目,这是我的第一个状压dp题,那么什么是状压dp呢?状压顾名思义就是状态压缩的意思,其实就是利用二进制以及他的位运算的优势来对问题进行优化
先来介绍一下什么是位运算吧
1.‘&’符号,x&y,会将两个十进制数在二进制下进行与运算,然后返回其十进制下的值。例如3(11)&2(10)=2(10)。
2.‘|’符号,x|y,会将两个十进制数在二进制下进行或运算,然后返回其十进制下的值。例如3(11)|2(10)=3(11)。
3.‘^’符号,x^y,会将两个十进制数在二进制下进行异或运算,然后返回其十进制下的值。例如3(11)^2(10)=1(01)。
4.‘<<’符号,左移操作,x<<2,将x在二进制下的每一位向左移动两位,最右边用0填充,x<<2相当于让x乘以4。
相应的,‘>>’是右移操作,x>>1相当于给x/2,去掉x二进制下的最有一位。
一个炮的攻击有两行,所以对于第i行来讲,i-1行和i-2行对它有影响,i-3行及以上的都没有影响了,所以我们要得到第i行的信息,只需要知道i-1和i-2的信息(最近有个体会,DP要找到什么因素影响了当前你要求的东西,有影响的我们就处理,没影响的我们不用管)。接着我们就思考怎么表示状态。山用1表示,空地用0表示,空地放了兵也用1表示,那么对于一行,就是一个01的串,这是个二进制数,我们可以想到状态压缩压缩回来一个十进制数。
这道题的思路就是先列举一下没有地形的干扰下所能安置炮兵的方案,由于炮兵之间相互限制,我们就先判断一行之间的炮兵是否冲突,这里我们有一个check函数:
int check(int x){//二进制判断两炮兵是否冲突
if(x&(x<<1))return 0;//与右边第一个 如 二进制 011,左移一位 110--011&110==1 冲突了 return0
if(x&(x<<2))return 0;//右边第二个
return 1;
}
然后输入地形,获得地形的状态,地形这里就有点烧脑了,仍旧是用二进制,我们用一个数的二进制来表示当前行的地图状态
for(int i=1;i<=n;i++){//从1开始
cin>>s;
for(int j=0;j<m;j++)//从0开始
if(s[j]=='H') mp[i]|=(1<<j);//mp[i]+=(1<<j)
//标记当前行的状态 如mp[i]=12 即 1100 当前行状态即为 0011 反着存的
}
因为是用二进制表示,所以通过‘&’运算即可知道当前的摆放方案是否合法。我们先处理第一行,因为第一行不受其他行的限制,我们只需要考虑地形因素即可,第二行就要同时考虑地形和第一行的限制问题,防止炮兵之间互干,前面建好模型之后后面的就是小套路问题了,因为从第三行开始往后的每一行都是由前面的两行来决定,当前两行的状态决定之后剩下行的状态就都一样了,当然并不简单,因为要同时考虑与前两行是否冲突的情况
还有就是dp数组,我们让dp[i][j][k]表示第i行,当前状态为 j 上一行状态为k 的最优方案
状态转移方程则是放与不放的抉择:dp[row][i][j]=max(dp[row][i][j],dp[row-1][j][k]+num[i]);
最后寻找一下最大值max即可
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#define ll long long
using namespace std;
const int inf=0x3f3f3f3f;
int mp[105];// 地图状态
int sta[66],num[66];//炮兵状态 及对应状态下的炮兵数目
int dp[105][66][66];//dp[i][j][k]第i行,当前状态为 j 上一行状态为k 的最优方案
int cnt=0;
int n,m;
char s[15];
int check(int x){//二进制判断两炮兵是否冲突
if(x&(x<<1))return 0;//与右边第一个 如 二进制 011,左移一位 110--011&110==1 冲突了 return0
if(x&(x<<2))return 0;//右边第二个
return 1;
}
int get(int x){//得到1的数目 即炮兵的数目
int ans=0;
while(x){
if(x&1)ans++;
x>>=1;
}
return ans;
}
void init(){
for(int i=0;i<(1<<m);i++){//每一行 共有(1<<m)种状态
if(check(i)){//不冲突 存起来
cnt++;
sta[cnt]=i;//存入状态 即怎么安排炮兵
num[cnt]=get(i);// 当前行 当前状态炮兵的数目
}
}
}
int main()
{
cin>>n>>m;
init();//无地形干扰下的放法
for(int i=1;i<=n;i++){//从1开始
cin>>s;
for(int j=0;j<m;j++)//从0开始
if(s[j]=='H') mp[i]|=(1<<j);//mp[i]+=(1<<j)
//标记当前行的状态 如mp[i]=12 即 1100 当前行状态即为 0011 反着存的
}
if(n>0)
for(int i=1;i<=cnt;i++){//处理第一行
if(mp[1]&sta[i])continue;//炮兵放在了山地上
dp[1][i][1]=num[i]; //因为没有上一行,所以上一行状态随便填一个[1,cnt]中的状态就行
}
if(n>1)
for(int i=1;i<=cnt;i++){//处理第二行
if(mp[2]&sta[i]) continue;//上山
for(int j=1;j<=cnt;j++){//枚举第一行 看两行之间是否冲突
if(sta[i]&sta[j])continue;//与第一行炮兵互干
dp[2][i][j]=max(dp[2][i][j],dp[1][j][1]+num[i]);//放与不放的抉择
}
}
if(n>2)
for(int row=3;row<=n;row++){//第3行及以后所有
for(int i=1;i<=cnt;i++){//当前行状态
if(mp[row]&sta[i])continue;//上山
for(int j=1;j<=cnt;j++){//上一行状态
if(sta[j]&sta[i])continue;//与上一行炮兵互干
for(int k=1;k<=cnt;k++){//上上行状态
if(sta[k]&sta[j])continue;//与上一行炮兵互干
if(sta[k]&sta[i])continue; //与上上行跑并互干
dp[row][i][j]=max(dp[row][i][j],dp[row-1][j][k]+num[i]);//放与不放的抉择
}
}
}
}
int res=0;
for(int i=1;i<=cnt;i++)
for(int j=1;j<=cnt;j++)
res=max(res,dp[n][i][j]);//找到max
cout<<res;
return 0;
}