这值得用一篇博客来记录!就在刚刚终于解决了一个bug,难受了一下午
下午为训练好的模型写一下测试的demo文件,在加载模型的地方卡住了,一开始设置了strict=False,但是识别的效果极差,而且离谱的是用验证集里面的图片识别也是很多乱码,开始恐慌,难道是训练了这么久的模型有问题吗,后来开始调试,尝试各种修改方案,CSDN太厉害了,我刚刚看到一篇博客就灵光一闪,是某个参数错了,修改了之后成功加载了!
RuntimeError: Error(s) in loading state_dict for DataParallel:
size mismatch for module.head.head.fc.weight: copying a param with shape torch.Size([6644, 192]) from checkpoint, the shape in current model is torch.Size([1000, 192]).
size mismatch for module.head.head.fc.bias: copying a param with shape torch.Size([6644]) from checkpoint, the shape in current model is torch.Size([1000]).
这个错误代表的是分类数不匹配,我去看了一下配置文件,果然字符分类数设置成了1000,模型的分类数是6644
训练的时候有修改,但是测试的代码中没有修改,于是出现错误了
成功解决~
参考链接: http://t.csdnimg.cn/Vztem
https://blog.csdn.net/qq_40755094/article/details/128145384