预训练权重参数和模型不匹配size mismatch for module.head.head.fc.weight和size mismatch for module.head.head.fc.bias

这值得用一篇博客来记录!就在刚刚终于解决了一个bug,难受了一下午
下午为训练好的模型写一下测试的demo文件,在加载模型的地方卡住了,一开始设置了strict=False,但是识别的效果极差,而且离谱的是用验证集里面的图片识别也是很多乱码,开始恐慌,难道是训练了这么久的模型有问题吗,后来开始调试,尝试各种修改方案,CSDN太厉害了,我刚刚看到一篇博客就灵光一闪,是某个参数错了,修改了之后成功加载了!

RuntimeError: Error(s) in loading state_dict for DataParallel:
        size mismatch for module.head.head.fc.weight: copying a param with shape torch.Size([6644, 192]) from checkpoint, the shape in current model is torch.Size([1000, 192]).    
        size mismatch for module.head.head.fc.bias: copying a param with shape torch.Size([6644]) from checkpoint, the shape in current model is torch.Size([1000]).

这个错误代表的是分类数不匹配,我去看了一下配置文件,果然字符分类数设置成了1000,模型的分类数是6644
在这里插入图片描述
训练的时候有修改,但是测试的代码中没有修改,于是出现错误了
成功解决~
参考链接: http://t.csdnimg.cn/Vztem
https://blog.csdn.net/qq_40755094/article/details/128145384

"size mismatch for fc.weight" 是一个错误消息,通常在使用神经网络模型训练或应用过程中出现。这个错误表示在全连接层(fully connected layer)的权重矩阵(fc.weight)上发生了尺寸不匹配的问题。 全连接层是神经网络模型中常用的一种层,它的作用是将前一层的所有节点与当前层的所有节点进行完全连接。这里的权重矩阵表示了连接这些节点之间的强度(权重),它的尺寸决定了连接的方式和数量。 出现"size mismatch for fc.weight"错误通常是由于输入层和输出层之间的尺寸不匹配导致的。这可能是由于以下几个原因引起的: 1. 输入层和输出层的节点数量不匹配:如果输入层的节点数量与全连接层的权重矩阵的行数不一致,就会出现尺寸不匹配的错误。 2. 其他层的尺寸不匹配:全连接层的输入可能来自于神经网络模型的前一层或者其他的层。如果前一层或其他层的输出尺寸与当前层的权重矩阵的行数不一致,也会导致尺寸不匹配的错误。 解决这个错误通常需要检查网络模型的结构和参数设置。可以尝试以下方法进行排查: 1. 确保输入层和输出层节点数量匹配。 2. 检查前一层或其他层的输出尺寸是否与当前层的权重矩阵的行数匹配。 3. 检查其他可能导致尺寸不匹配的地方,例如数据预处理过程中是否有错误。 通过仔细检查和调试,可以找到并解决"size mismatch for fc.weight"错误,确保模型能够正常训练或应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值