【Cloud Code】Skills

1. 章节介绍

本章节聚焦Anthropic生态核心功能Skills与开发工具Cloud Code的落地实践,核心解决两大问题:一是通过Skills突破大模型“上下文局限”,实现专业化、定制化任务输出;二是针对国内用户面临的Anthropic模型访问限制,提供国产模型(如GLM)的适配方案。内容以“概念解析→实操演示→替代方案”为逻辑主线,覆盖Skills的设计原理、Cloud Code中的技能开发与应用,以及国产模型的集成步骤,为开发者提供从“工具使用”到“定制化落地”的完整技术路径,适用于AI辅助开发、大模型生态适配等场景。

核心知识点面试频率
Anthropic Skills的定义与构成
Cloud Code中Skills的安装与自定义
Skills突破大模型上下文局限的原理
Cloud Code国产模型(GLM)适配方案
Cloud Code Router第三方库的模型替换逻辑

2. 知识点详解

2.1 Anthropic Skills核心概念与价值

  • 定义:Skills是Anthropic推出的“专业化技能包”,本质是将特定领域的知识、规则、工具调用逻辑封装为标准化模块,供大模型调用以完成精准任务。
  • 三大核心构成
    1. 说明(Description):类似“技能简介”,用自然语言描述技能的适用场景、功能范围(如“前端墨水屏风格页面生成器,支持320*480分辨率”),供大模型判断是否匹配用户需求;
    2. 脚本(Script):核心执行逻辑,可包含代码片段、指令规则(如前端开发中固定HTML结构、CSS样式规范),定义大模型输出的格式与内容;
    3. 资源(Resources):辅助文件或依赖(如参考设计图、技术栈文档、外部API接口地址),为脚本执行提供支撑。
  • 核心价值:突破大模型“上下文记忆局限”——传统大模型难以长期保持多套风格/规则(如同时掌握“移动端”“墨水屏”两种前端设计规范),而Skills通过“模块化封装”,让大模型像“HR筛选员工”一样,按需调用对应技能,确保输出一致性(如多次生成墨水屏页面均符合同一分辨率与样式)。

2.2 Cloud Code中Skills的实操流程(含代码/命令示例)

2.2.1 官方Skills安装与应用(以“墨水屏阅读器页面生成”为例)
  1. 安装前提:确保Cloud Code已安装并启动,终端可正常执行Cloud Code命令。
  2. 执行安装命令
    通过终端输入官方插件安装指令,获取预设Skills案例(以官方前端技能包为例):
    # 安装Cloud Code官方Skills插件(假设插件ID为"anthropic-skills-frontend")
    cloud-code plugins install anthropic-skills-frontend
    
  3. 重启生效
    安装完成后,重启Cloud Code以加载新技能:
    # 重启Cloud Code服务(不同系统命令可能略有差异)
    cloud-code restart
    
  4. 技能调用与验证
    在Cloud Code交互界面输入指令,触发技能调用:
    请使用已安装的墨水屏风格技能,生成一个阅读器页面,包含标题栏、内容区、翻页按钮。
    
    预期输出:符合320*480分辨率、低饱和度配色(墨水屏特性)的HTML代码,结构包含预设的标题栏(id=“header”)、内容区(id=“content”)、翻页按钮(class=“page-btn”)。
2.2.2 自定义Skills开发(以“中文文档+分辨率限制”为例)
  1. 创建技能目录
    在Cloud Code指定技能目录(通常为~/.cloud-code/skills)下新建自定义技能文件夹:
    # 新建名为"chinese-epaper-skill"的自定义技能目录
    mkdir -p ~/.cloud-code/skills/chinese-epaper-skill
    
  2. 编写核心文件
    在目录下创建skill.json(说明与脚本),示例如下:
    {
      "name": "中文墨水屏页面生成器",  // 技能名称
      "description": "生成中文环境下的墨水屏风格前端页面,强制限制分辨率为320*480,仅使用黑白灰配色,避免动画效果",  // 技能说明(供大模型识别)
      "script": {
        "language": "html/css",  // 脚本语言
        "template": "<!DOCTYPE html>\n<html>\n<head>\n    <meta charset=\"UTF-8\">\n    <title>{{title}}</title>\n    <style>\n        /* 固定分辨率与墨水屏样式 */\n        body { width: 320px; height: 480px; margin: 0; padding: 0; background: #fff; color: #000; font-family: SimSun; }\n        .header { height: 50px; line-height: 50px; text-align: center; border-bottom: 1px solid #333; }\n        .content { height: 380px; padding: 10px; overflow: auto; }\n    </style>\n</head>\n<body>\n    <div class=\"header\">{{headerText}}</div>\n    <div class=\"content\">{{content}}</div>\n</body>\n</html>",  // 页面模板,{{变量}}供大模型填充内容
        "variables": ["title", "headerText", "content"]  // 需用户或大模型补充的变量
      },
      "resources": {
        "reference": "墨水屏设计规范:https://example.com/epaper-design.pdf"  // 参考资源
      }
    }
    
  3. 生效与测试
    重启Cloud Code后,输入指令测试自定义技能:
    使用“中文墨水屏页面生成器”技能,生成标题为“唐诗阅读”、标题栏文本为“唐诗三百首”、内容为“床前明月光,疑是地上霜”的页面。
    
    预期输出:符合skill.json模板的HTML代码,分辨率、配色、结构完全匹配自定义规则。

2.3 Cloud Code国产模型适配方案(高频考点)

2.3.1 方案一:质朴青岩GLM模型直接适配
  • 适配背景:国内用户因地域限制无法访问Anthropic原版模型(如Claude),GLM(智谱大模型)作为国产主流模型,提供官方Cloud Code适配文档,且性价比高。
  • 核心步骤
    1. 获取GLM API密钥
      登录质朴青岩官网(https://www.zhipuai.cn/),进入“API密钥管理”页面,创建并复制密钥(格式为sk-xxxxxxxxxxxxxxxxxxxxxx);
    2. 配置Cloud Code模型参数
      打开Cloud Code配置文件(通常为~/.cloud-code/config.json),修改模型相关字段:
      {
        "model": {
          "provider": "zhipuai",  // 模型提供商改为“质朴青岩”
          "name": "glm-4",        // 模型名称(如GLM-4)
          "api_key": "sk-xxxxxxxxxxxxxxxxxxxxxx",  // 填入获取的GLM API密钥
          "base_url": "https://open.bigmodel.cn/api/paas/v4/"  // GLM官方API基础地址
        }
      }
      
    3. 验证适配效果
      重启Cloud Code后,输入测试指令(如“生成一个简单的Python冒泡排序代码”),若输出符合GLM模型风格且无访问错误,说明适配成功。
2.3.2 方案二:Cloud Code Router+Open Router实现多模型替换
  • 核心原理:Cloud Code Router是第三方开源库,通过“请求转发”机制,将Cloud Code的模型调用请求重定向到Open Router(支持多模型聚合的平台),从而实现“一键切换任意主流模型”(包括国产模型如GLM、文心一言,国外模型如GPT-4)。
  • 核心步骤
    1. 安装Cloud Code Router
      通过npm或pip安装(以npm为例):
      npm install -g cloud-code-router
      
    2. 配置Open Router密钥与目标模型
      ① 登录Open Router官网(https://openrouter.ai/),获取API密钥;
      ② 创建Router配置文件router.config.js
      module.exports = {
        openRouter: {
          apiKey: "sk-or-xxxxxxxxxxxxxxxxxxxxxx",  // Open Router API密钥
          defaultModel: "zhipuai/glm-4"  // 默认目标模型(国产GLM-4)
        },
        // 端口配置,与Cloud Code保持一致
        port: 3000
      };
      
    3. 启动Router并关联Cloud Code
      # 启动Router服务
      cloud-code-router start --config router.config.js
      # 修改Cloud Code配置,将模型请求指向Router地址
      # 编辑~/.cloud-code/config.json
      {
        "model": {
          "provider": "custom",
          "base_url": "http://localhost:3000/v1"  // Router服务地址
        }
      }
      
    4. 模型切换
      如需更换为其他国产模型(如文心一言),仅需修改router.config.js中的defaultModelbaidu/ernie-4.0,无需调整Cloud Code主配置。

3. 章节总结

本章节核心围绕“Anthropic Skills的专业化落地”与“Cloud Code的国产适配”展开:

  1. Skills通过“说明+脚本+资源”的模块化设计,解决大模型上下文局限,实现定制化任务输出(如固定风格的前端开发);
  2. Cloud Code中Skills的使用分为“官方安装”与“自定义开发”,核心是通过配置文件定义技能规则,重启后即可调用;
  3. 针对国内用户的模型访问限制,提供两种可行方案:一是GLM官方适配(直接修改Cloud Code配置),二是Cloud Code Router+Open Router(灵活切换多模型);
  4. 所有技术均以“实操为导向”,从命令执行到配置文件编写,覆盖开发者从“上手”到“定制”的全流程需求。

4. 知识点补充

4.1 相关补充知识点

  1. 大模型“上下文窗口”局限原理:大模型的上下文窗口(如Claude 3为200k tokens)是固定的,若需同时存储多套规则(如10种前端风格),会占用大量窗口空间,导致后续信息被覆盖;而Skills将规则“外置封装”,仅在调用时传入关键指令,大幅节省上下文资源。
  2. Open Router的多模型聚合逻辑:Open Router是第三方模型代理平台,整合了Anthropic、OpenAI、国产厂商(智谱、百度)等200+模型,通过统一API接口接收请求,根据用户指定的模型名称转发到对应厂商的API,简化多模型适配成本。
  3. GLM模型与Anthropic模型的功能差异:GLM-4在中文处理、国内场景适配(如符合国内法规的内容过滤)上更优,而Anthropic Claude在长文本理解(如10万字文档分析)上表现更强,开发者需根据场景选择适配模型。
  4. Cloud Code配置文件加载优先级:Cloud Code的配置加载遵循“局部覆盖全局”原则,用户自定义配置(~/.cloud-code/config.json)优先级高于默认配置,模型适配时只需修改用户级配置,无需改动安装目录下的系统配置。
  5. Skills脚本的“变量注入”机制:Skills脚本中的{{变量}}(如{{title}})采用“模板引擎”思想,大模型会根据用户输入的需求自动填充变量值,若变量未明确,会主动追问用户(如“请提供页面标题”),本质是大模型与技能模板的交互逻辑。

4.2 最佳实践:企业级Cloud Code Skills开发规范

场景:企业内部需开发一套“统一后端接口生成”Skills,确保所有开发者生成的API文档、接口代码符合公司RESTful规范(如URL命名、请求方法、响应格式)。
实施步骤

  1. 技能需求定义:明确技能适用范围(Java Spring Boot后端)、输出内容(API接口文档+Controller代码)、规范约束(URL需以/api/v1/开头,响应格式固定为{code: 200, data: {}, msg: ""});
  2. 标准化配置文件
    创建enterprise-api-skill.json,统一脚本模板与变量:
    {
      "name": "企业级API生成器",
      "description": "生成符合公司RESTful规范的Java Spring Boot API,包含接口文档与Controller代码,URL前缀固定为/api/v1/,响应格式包含code、data、msg字段",
      "script": {
        "language": "java",
        "template": "/**\n * {{apiDesc}}\n * @author Cloud Code\n */\n@RestController\n@RequestMapping(\"/api/v1/{{moduleName}}\")\npublic class {{controllerName}}Controller {\n\n    @{{httpMethod}}\n    public ResultDTO<{{responseType}}> {{methodName}}({{requestParam}}) {\n        // 业务逻辑待实现\n        return ResultDTO.success({{mockData}});\n    }\n}\n\n// 统一响应DTO(公司标准)\nclass ResultDTO<T> {\n    private Integer code;\n    private T data;\n    private String msg;\n    // getter/setter省略\n    public static <T> ResultDTO<T> success(T data) {\n        ResultDTO<T> dto = new ResultDTO<>();\n        dto.setCode(200);\n        dto.setData(data);\n        dto.setMsg(\"success\");\n        return dto;\n    }\n}",
        "variables": ["apiDesc", "moduleName", "controllerName", "httpMethod", "methodName", "requestParam", "responseType", "mockData"]
      },
      "resources": {
        "规范文档": "https://company-docs.com/restful-spec.pdf"
      }
    }
    
  3. 团队共享与版本控制:将技能文件上传至企业Git仓库(如git@company.com:cloud-code-skills/enterprise-api-skill.git),团队成员通过Git拉取到本地~/.cloud-code/skills目录,确保技能版本统一;
  4. 权限控制:通过Cloud Code的“技能权限管理”功能,仅允许后端开发者启用该技能,避免跨部门误用;
  5. 迭代优化:定期收集开发者反馈(如新增“分页参数自动生成”需求),更新脚本模板,通过Git提交更新,团队成员拉取后重启Cloud Code即可生效。

4.3 编程思想指导:“模块化封装”与“适配性设计”思想

  1. 模块化封装思想:Skills的设计本质是“领域驱动的模块化”——将特定领域(如前端墨水屏开发、后端API生成)的知识拆解为“可复用、可配置”的模块,核心优势是“解耦”:

    • 大模型无需记忆具体规则(如CSS样式),只需调用模块;
    • 规则变更时(如分辨率从320480改为480800),仅需修改Skills脚本,无需重新训练模型;
      开发启示:在AI辅助开发中,应将“固定规则”(如公司编码规范、行业标准)封装为模块,而非依赖大模型“记忆”,提升输出一致性与维护效率。
  2. 适配性设计思想:Cloud Code国产模型适配的两种方案,体现了“最小修改”与“灵活扩展”的设计原则:

    • GLM官方适配:适合“单一模型长期使用”场景,修改成本低(仅改配置文件);
    • Cloud Code Router方案:适合“多模型切换”场景,通过中间层(Router)隔离Cloud Code与模型提供商,实现“一处配置,多模型复用”;
      开发启示:面对外部依赖限制(如模型访问、API变更),应优先引入“中间层”(如Router、适配器模式),避免直接修改核心业务代码,提升系统的可扩展性与兼容性。

5. 程序员面试题

  1. 简单题:Anthropic Skills由哪三部分构成?其核心价值是什么?
    答案:Skills由说明(Description)、脚本(Script)、资源(Resources) 三部分构成。核心价值是突破大模型的上下文局限——传统大模型难以长期保持多套风格/规则(如同时掌握多种前端设计规范),而Skills通过模块化封装,让大模型按需调用对应技能,确保输出内容的专业化与一致性(如多次生成的墨水屏页面均符合同一分辨率与样式)。

  2. 中等难度题:在Cloud Code中自定义一个“Python数据可视化技能”(要求生成Matplotlib折线图,固定蓝色线条、网格显示),请写出核心配置文件(skill.json)的关键内容,并说明生效步骤。
    答案

    ① 核心配置文件skill.json

{
  "name": "Python Matplotlib折线图生成器",
  "description": "生成符合要求的Python Matplotlib折线图代码,强制使用蓝色线条、显示网格,支持传入x轴数据、y轴数据、图表标题",
  "script": {
    "language": "python",
    "template": "import matplotlib.pyplot as plt

# 配置图表样式
plt.rcParams['font.sans-serif'] = ['SimHei']  # 解决中文显示问题
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 数据定义
x = {{x_data}}
y = {{y_data}}

# 创建折线图,固定蓝色线条
plt.plot(x, y, color='blue')
# 显示网格
plt.grid(True)
# 设置图表标题
plt.title('{{chart_title}}')
# 设置坐标轴标签
plt.xlabel('X轴')
plt.ylabel('Y轴')

# 展示图表
plt.show()",
    "variables": ["x_data", "y_data", "chart_title"]
  },
  "resources": {
    "参考文档": "https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html"
  }
}

② 生效步骤:

  1. 创建技能目录:在Cloud Code的技能存储目录(通常为~/.cloud-code/skills)下,新建名为python-matplotlib-line-skill的文件夹
  2. 写入配置文件:将上述skill.json内容写入该文件夹中
  3. 重启Cloud Code:在终端执行cloud-code restart命令,让Cloud Code加载新的自定义技能
  4. 测试验证:在Cloud Code的交互界面输入指令,例如“使用Python Matplotlib折线图生成器技能,x轴数据为[1,2,3,4,5],y轴数据为[10,20,15,25,30],图表标题为’月度销售数据’”,即可生成符合要求的Python代码

  1. 中等难度题:请对比Cloud Code适配GLM模型的两种方案(官方直接适配、Cloud Code Router+Open Router)的优缺点,分别说明适用场景
    答案
    方案优点缺点适用场景
    GLM官方直接适配1. 配置步骤简单,仅需修改Cloud Code的配置文件,无需额外依赖第三方工具;2. 无中间层转发,请求延迟更低;3. 官方文档支持,问题排查成本低1. 仅支持GLM系列模型,无法快速切换其他国产/海外模型;2. 需单独管理GLM的API密钥,多模型场景下密钥管理复杂1. 长期固定使用GLM模型的场景;2. 对请求延迟有要求的生产环境;3. 团队技术栈单一,无需多模型切换的场景
    Cloud Code Router+Open Router1. 支持200+主流模型(包括GLM、文心一言、GPT-4等),可通过配置一键切换模型;2. 统一API密钥管理,仅需维护Open Router的密钥即可;3. 中间层可添加自定义逻辑(如请求限流、日志记录)1. 引入第三方依赖,部署复杂度提升;2. 存在中间层转发的额外延迟;3. Open Router的免费额度有限,高流量场景下有成本1. 需要频繁切换不同模型的场景(如测试不同模型的输出效果);2. 团队需要使用多类模型的场景;3. 需要添加请求管控、日志等扩展逻辑的场景
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值