1. 章节介绍
本章节聚焦Anthropic生态核心功能Skills与开发工具Cloud Code的落地实践,核心解决两大问题:一是通过Skills突破大模型“上下文局限”,实现专业化、定制化任务输出;二是针对国内用户面临的Anthropic模型访问限制,提供国产模型(如GLM)的适配方案。内容以“概念解析→实操演示→替代方案”为逻辑主线,覆盖Skills的设计原理、Cloud Code中的技能开发与应用,以及国产模型的集成步骤,为开发者提供从“工具使用”到“定制化落地”的完整技术路径,适用于AI辅助开发、大模型生态适配等场景。
| 核心知识点 | 面试频率 |
|---|---|
| Anthropic Skills的定义与构成 | 低 |
| Cloud Code中Skills的安装与自定义 | 中 |
| Skills突破大模型上下文局限的原理 | 中 |
| Cloud Code国产模型(GLM)适配方案 | 高 |
| Cloud Code Router第三方库的模型替换逻辑 | 高 |
2. 知识点详解
2.1 Anthropic Skills核心概念与价值
- 定义:Skills是Anthropic推出的“专业化技能包”,本质是将特定领域的知识、规则、工具调用逻辑封装为标准化模块,供大模型调用以完成精准任务。
- 三大核心构成:
- 说明(Description):类似“技能简介”,用自然语言描述技能的适用场景、功能范围(如“前端墨水屏风格页面生成器,支持320*480分辨率”),供大模型判断是否匹配用户需求;
- 脚本(Script):核心执行逻辑,可包含代码片段、指令规则(如前端开发中固定HTML结构、CSS样式规范),定义大模型输出的格式与内容;
- 资源(Resources):辅助文件或依赖(如参考设计图、技术栈文档、外部API接口地址),为脚本执行提供支撑。
- 核心价值:突破大模型“上下文记忆局限”——传统大模型难以长期保持多套风格/规则(如同时掌握“移动端”“墨水屏”两种前端设计规范),而Skills通过“模块化封装”,让大模型像“HR筛选员工”一样,按需调用对应技能,确保输出一致性(如多次生成墨水屏页面均符合同一分辨率与样式)。
2.2 Cloud Code中Skills的实操流程(含代码/命令示例)
2.2.1 官方Skills安装与应用(以“墨水屏阅读器页面生成”为例)
- 安装前提:确保Cloud Code已安装并启动,终端可正常执行Cloud Code命令。
- 执行安装命令:
通过终端输入官方插件安装指令,获取预设Skills案例(以官方前端技能包为例):# 安装Cloud Code官方Skills插件(假设插件ID为"anthropic-skills-frontend") cloud-code plugins install anthropic-skills-frontend - 重启生效:
安装完成后,重启Cloud Code以加载新技能:# 重启Cloud Code服务(不同系统命令可能略有差异) cloud-code restart - 技能调用与验证:
在Cloud Code交互界面输入指令,触发技能调用:
预期输出:符合320*480分辨率、低饱和度配色(墨水屏特性)的HTML代码,结构包含预设的标题栏(id=“header”)、内容区(id=“content”)、翻页按钮(class=“page-btn”)。请使用已安装的墨水屏风格技能,生成一个阅读器页面,包含标题栏、内容区、翻页按钮。
2.2.2 自定义Skills开发(以“中文文档+分辨率限制”为例)
- 创建技能目录:
在Cloud Code指定技能目录(通常为~/.cloud-code/skills)下新建自定义技能文件夹:# 新建名为"chinese-epaper-skill"的自定义技能目录 mkdir -p ~/.cloud-code/skills/chinese-epaper-skill - 编写核心文件:
在目录下创建skill.json(说明与脚本),示例如下:{ "name": "中文墨水屏页面生成器", // 技能名称 "description": "生成中文环境下的墨水屏风格前端页面,强制限制分辨率为320*480,仅使用黑白灰配色,避免动画效果", // 技能说明(供大模型识别) "script": { "language": "html/css", // 脚本语言 "template": "<!DOCTYPE html>\n<html>\n<head>\n <meta charset=\"UTF-8\">\n <title>{{title}}</title>\n <style>\n /* 固定分辨率与墨水屏样式 */\n body { width: 320px; height: 480px; margin: 0; padding: 0; background: #fff; color: #000; font-family: SimSun; }\n .header { height: 50px; line-height: 50px; text-align: center; border-bottom: 1px solid #333; }\n .content { height: 380px; padding: 10px; overflow: auto; }\n </style>\n</head>\n<body>\n <div class=\"header\">{{headerText}}</div>\n <div class=\"content\">{{content}}</div>\n</body>\n</html>", // 页面模板,{{变量}}供大模型填充内容 "variables": ["title", "headerText", "content"] // 需用户或大模型补充的变量 }, "resources": { "reference": "墨水屏设计规范:https://example.com/epaper-design.pdf" // 参考资源 } } - 生效与测试:
重启Cloud Code后,输入指令测试自定义技能:
预期输出:符合使用“中文墨水屏页面生成器”技能,生成标题为“唐诗阅读”、标题栏文本为“唐诗三百首”、内容为“床前明月光,疑是地上霜”的页面。skill.json模板的HTML代码,分辨率、配色、结构完全匹配自定义规则。
2.3 Cloud Code国产模型适配方案(高频考点)
2.3.1 方案一:质朴青岩GLM模型直接适配
- 适配背景:国内用户因地域限制无法访问Anthropic原版模型(如Claude),GLM(智谱大模型)作为国产主流模型,提供官方Cloud Code适配文档,且性价比高。
- 核心步骤:
- 获取GLM API密钥:
登录质朴青岩官网(https://www.zhipuai.cn/),进入“API密钥管理”页面,创建并复制密钥(格式为sk-xxxxxxxxxxxxxxxxxxxxxx); - 配置Cloud Code模型参数:
打开Cloud Code配置文件(通常为~/.cloud-code/config.json),修改模型相关字段:{ "model": { "provider": "zhipuai", // 模型提供商改为“质朴青岩” "name": "glm-4", // 模型名称(如GLM-4) "api_key": "sk-xxxxxxxxxxxxxxxxxxxxxx", // 填入获取的GLM API密钥 "base_url": "https://open.bigmodel.cn/api/paas/v4/" // GLM官方API基础地址 } } - 验证适配效果:
重启Cloud Code后,输入测试指令(如“生成一个简单的Python冒泡排序代码”),若输出符合GLM模型风格且无访问错误,说明适配成功。
- 获取GLM API密钥:
2.3.2 方案二:Cloud Code Router+Open Router实现多模型替换
- 核心原理:Cloud Code Router是第三方开源库,通过“请求转发”机制,将Cloud Code的模型调用请求重定向到Open Router(支持多模型聚合的平台),从而实现“一键切换任意主流模型”(包括国产模型如GLM、文心一言,国外模型如GPT-4)。
- 核心步骤:
- 安装Cloud Code Router:
通过npm或pip安装(以npm为例):npm install -g cloud-code-router - 配置Open Router密钥与目标模型:
① 登录Open Router官网(https://openrouter.ai/),获取API密钥;
② 创建Router配置文件router.config.js:module.exports = { openRouter: { apiKey: "sk-or-xxxxxxxxxxxxxxxxxxxxxx", // Open Router API密钥 defaultModel: "zhipuai/glm-4" // 默认目标模型(国产GLM-4) }, // 端口配置,与Cloud Code保持一致 port: 3000 }; - 启动Router并关联Cloud Code:
# 启动Router服务 cloud-code-router start --config router.config.js # 修改Cloud Code配置,将模型请求指向Router地址 # 编辑~/.cloud-code/config.json { "model": { "provider": "custom", "base_url": "http://localhost:3000/v1" // Router服务地址 } } - 模型切换:
如需更换为其他国产模型(如文心一言),仅需修改router.config.js中的defaultModel为baidu/ernie-4.0,无需调整Cloud Code主配置。
- 安装Cloud Code Router:
3. 章节总结
本章节核心围绕“Anthropic Skills的专业化落地”与“Cloud Code的国产适配”展开:
- Skills通过“说明+脚本+资源”的模块化设计,解决大模型上下文局限,实现定制化任务输出(如固定风格的前端开发);
- Cloud Code中Skills的使用分为“官方安装”与“自定义开发”,核心是通过配置文件定义技能规则,重启后即可调用;
- 针对国内用户的模型访问限制,提供两种可行方案:一是GLM官方适配(直接修改Cloud Code配置),二是Cloud Code Router+Open Router(灵活切换多模型);
- 所有技术均以“实操为导向”,从命令执行到配置文件编写,覆盖开发者从“上手”到“定制”的全流程需求。
4. 知识点补充
4.1 相关补充知识点
- 大模型“上下文窗口”局限原理:大模型的上下文窗口(如Claude 3为200k tokens)是固定的,若需同时存储多套规则(如10种前端风格),会占用大量窗口空间,导致后续信息被覆盖;而Skills将规则“外置封装”,仅在调用时传入关键指令,大幅节省上下文资源。
- Open Router的多模型聚合逻辑:Open Router是第三方模型代理平台,整合了Anthropic、OpenAI、国产厂商(智谱、百度)等200+模型,通过统一API接口接收请求,根据用户指定的模型名称转发到对应厂商的API,简化多模型适配成本。
- GLM模型与Anthropic模型的功能差异:GLM-4在中文处理、国内场景适配(如符合国内法规的内容过滤)上更优,而Anthropic Claude在长文本理解(如10万字文档分析)上表现更强,开发者需根据场景选择适配模型。
- Cloud Code配置文件加载优先级:Cloud Code的配置加载遵循“局部覆盖全局”原则,用户自定义配置(
~/.cloud-code/config.json)优先级高于默认配置,模型适配时只需修改用户级配置,无需改动安装目录下的系统配置。 - Skills脚本的“变量注入”机制:Skills脚本中的
{{变量}}(如{{title}})采用“模板引擎”思想,大模型会根据用户输入的需求自动填充变量值,若变量未明确,会主动追问用户(如“请提供页面标题”),本质是大模型与技能模板的交互逻辑。
4.2 最佳实践:企业级Cloud Code Skills开发规范
场景:企业内部需开发一套“统一后端接口生成”Skills,确保所有开发者生成的API文档、接口代码符合公司RESTful规范(如URL命名、请求方法、响应格式)。
实施步骤:
- 技能需求定义:明确技能适用范围(Java Spring Boot后端)、输出内容(API接口文档+Controller代码)、规范约束(URL需以
/api/v1/开头,响应格式固定为{code: 200, data: {}, msg: ""}); - 标准化配置文件:
创建enterprise-api-skill.json,统一脚本模板与变量:{ "name": "企业级API生成器", "description": "生成符合公司RESTful规范的Java Spring Boot API,包含接口文档与Controller代码,URL前缀固定为/api/v1/,响应格式包含code、data、msg字段", "script": { "language": "java", "template": "/**\n * {{apiDesc}}\n * @author Cloud Code\n */\n@RestController\n@RequestMapping(\"/api/v1/{{moduleName}}\")\npublic class {{controllerName}}Controller {\n\n @{{httpMethod}}\n public ResultDTO<{{responseType}}> {{methodName}}({{requestParam}}) {\n // 业务逻辑待实现\n return ResultDTO.success({{mockData}});\n }\n}\n\n// 统一响应DTO(公司标准)\nclass ResultDTO<T> {\n private Integer code;\n private T data;\n private String msg;\n // getter/setter省略\n public static <T> ResultDTO<T> success(T data) {\n ResultDTO<T> dto = new ResultDTO<>();\n dto.setCode(200);\n dto.setData(data);\n dto.setMsg(\"success\");\n return dto;\n }\n}", "variables": ["apiDesc", "moduleName", "controllerName", "httpMethod", "methodName", "requestParam", "responseType", "mockData"] }, "resources": { "规范文档": "https://company-docs.com/restful-spec.pdf" } } - 团队共享与版本控制:将技能文件上传至企业Git仓库(如
git@company.com:cloud-code-skills/enterprise-api-skill.git),团队成员通过Git拉取到本地~/.cloud-code/skills目录,确保技能版本统一; - 权限控制:通过Cloud Code的“技能权限管理”功能,仅允许后端开发者启用该技能,避免跨部门误用;
- 迭代优化:定期收集开发者反馈(如新增“分页参数自动生成”需求),更新脚本模板,通过Git提交更新,团队成员拉取后重启Cloud Code即可生效。
4.3 编程思想指导:“模块化封装”与“适配性设计”思想
-
模块化封装思想:Skills的设计本质是“领域驱动的模块化”——将特定领域(如前端墨水屏开发、后端API生成)的知识拆解为“可复用、可配置”的模块,核心优势是“解耦”:
- 大模型无需记忆具体规则(如CSS样式),只需调用模块;
- 规则变更时(如分辨率从320480改为480800),仅需修改Skills脚本,无需重新训练模型;
开发启示:在AI辅助开发中,应将“固定规则”(如公司编码规范、行业标准)封装为模块,而非依赖大模型“记忆”,提升输出一致性与维护效率。
-
适配性设计思想:Cloud Code国产模型适配的两种方案,体现了“最小修改”与“灵活扩展”的设计原则:
- GLM官方适配:适合“单一模型长期使用”场景,修改成本低(仅改配置文件);
- Cloud Code Router方案:适合“多模型切换”场景,通过中间层(Router)隔离Cloud Code与模型提供商,实现“一处配置,多模型复用”;
开发启示:面对外部依赖限制(如模型访问、API变更),应优先引入“中间层”(如Router、适配器模式),避免直接修改核心业务代码,提升系统的可扩展性与兼容性。
5. 程序员面试题
-
简单题:Anthropic Skills由哪三部分构成?其核心价值是什么?
答案:Skills由说明(Description)、脚本(Script)、资源(Resources) 三部分构成。核心价值是突破大模型的上下文局限——传统大模型难以长期保持多套风格/规则(如同时掌握多种前端设计规范),而Skills通过模块化封装,让大模型按需调用对应技能,确保输出内容的专业化与一致性(如多次生成的墨水屏页面均符合同一分辨率与样式)。 -
中等难度题:在Cloud Code中自定义一个“Python数据可视化技能”(要求生成Matplotlib折线图,固定蓝色线条、网格显示),请写出核心配置文件(skill.json)的关键内容,并说明生效步骤。
答案:① 核心配置文件
skill.json:
{
"name": "Python Matplotlib折线图生成器",
"description": "生成符合要求的Python Matplotlib折线图代码,强制使用蓝色线条、显示网格,支持传入x轴数据、y轴数据、图表标题",
"script": {
"language": "python",
"template": "import matplotlib.pyplot as plt
# 配置图表样式
plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文显示问题
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 数据定义
x = {{x_data}}
y = {{y_data}}
# 创建折线图,固定蓝色线条
plt.plot(x, y, color='blue')
# 显示网格
plt.grid(True)
# 设置图表标题
plt.title('{{chart_title}}')
# 设置坐标轴标签
plt.xlabel('X轴')
plt.ylabel('Y轴')
# 展示图表
plt.show()",
"variables": ["x_data", "y_data", "chart_title"]
},
"resources": {
"参考文档": "https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html"
}
}
② 生效步骤:
- 创建技能目录:在Cloud Code的技能存储目录(通常为
~/.cloud-code/skills)下,新建名为python-matplotlib-line-skill的文件夹 - 写入配置文件:将上述
skill.json内容写入该文件夹中 - 重启Cloud Code:在终端执行
cloud-code restart命令,让Cloud Code加载新的自定义技能 - 测试验证:在Cloud Code的交互界面输入指令,例如“使用Python Matplotlib折线图生成器技能,x轴数据为[1,2,3,4,5],y轴数据为[10,20,15,25,30],图表标题为’月度销售数据’”,即可生成符合要求的Python代码
- 中等难度题:请对比Cloud Code适配GLM模型的两种方案(官方直接适配、Cloud Code Router+Open Router)的优缺点,分别说明适用场景
答案:方案 优点 缺点 适用场景 GLM官方直接适配 1. 配置步骤简单,仅需修改Cloud Code的配置文件,无需额外依赖第三方工具;2. 无中间层转发,请求延迟更低;3. 官方文档支持,问题排查成本低 1. 仅支持GLM系列模型,无法快速切换其他国产/海外模型;2. 需单独管理GLM的API密钥,多模型场景下密钥管理复杂 1. 长期固定使用GLM模型的场景;2. 对请求延迟有要求的生产环境;3. 团队技术栈单一,无需多模型切换的场景 Cloud Code Router+Open Router 1. 支持200+主流模型(包括GLM、文心一言、GPT-4等),可通过配置一键切换模型;2. 统一API密钥管理,仅需维护Open Router的密钥即可;3. 中间层可添加自定义逻辑(如请求限流、日志记录) 1. 引入第三方依赖,部署复杂度提升;2. 存在中间层转发的额外延迟;3. Open Router的免费额度有限,高流量场景下有成本 1. 需要频繁切换不同模型的场景(如测试不同模型的输出效果);2. 团队需要使用多类模型的场景;3. 需要添加请求管控、日志等扩展逻辑的场景
2297

被折叠的 条评论
为什么被折叠?



