★实验任务
dark di在做数学题目的时候发现了一个现象,2个相邻的素数之间存在一个区间,他把这个区间称为非素数区间,那么dark di想知道,给定一个正整数x,x所在的非素数区间长度是多少呢? 例如23和29是2个相邻的素数,他们之间的非素数区间是[24,28],长度是5,假设x=27,那么x所在的非素数区间长度就是5。如果x是一个素数,则答案是0。
注意:素数指的是除了1和它本身以外不再有其他因数的自然数。
★输入格式
第一行输入一个正整数T,表示接下去有T次询问。
接下去T行,每行一个正整数x。(x<=100000)。
对于30%的数据,T<=5,x<=100
对于80%的数据,T<=10,x<=5000
对于100%的数据,T<=100000,x<=100000
★输出格式
输入T行,每行一个整数表示非素数区间的长度。
★输入样例
2
27
1
★输出样例
5
0
看到素数,毋庸置疑又要用到素数筛法了,来复习一下欧拉筛的写法
同时查找x所在的非素数区间可以使用二分查找
//Matsuri
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#define MAX 200001
int sieve[MAX],prime[MAX]; // sieve存筛子,prime存MAX范围内所有素数
bool number[MAX]; // 1代表当前number[i]中,i是素数,0代表不是素数
int T,x;
int main()
{
scanf("%d",&T);
//欧拉筛,把所有素数都标记出来,以备后续得到素数序列prime[]
int cnt=0;
memset(number,1,sizeof(number)); //初始化,认为全是素数
for (int i=2;i<=MAX;i++)
{
if (number[i]) sieve[cnt++]=i;
for (int j=0;j<cnt&&i*sieve[j]<=MAX;j++)
{
number[i*sieve[j]]=0;
if (i%sieve[j]==0) break;
}
}
int cntt=0; //prime里素数的总个数
for (int i=2;i<=MAX;i++)
{
if (number[i]) prime[++cntt]=i;
}
for (int i=1;i<=T;i++)
{
scanf("%d",&x);
if (x==0 || x==1 || number[x]) //对题目中的特殊情况进行处理
{
printf("%d\n",0);
continue;
}
//二分查找
int L=1,R=cntt,mid,ans;
// L R为待查区间下标的左右限,ans为最终确定的区间的左上限值的下标
while(L<=R)
{
mid=(L+R)>>1;
if (prime[mid]<x)
{
ans=mid;
L=mid+1;
}
else R=mid-1;
}
printf("%d\n",prime[ans+1]-prime[ans]-1);
}
return 0;
}
mid=(L+R)>>1; //该行代码等同于mid=(L+R)/2
关于这句,是被一个带佬指点时学到的:
称为位运算,有时候使用会有奇效,可以积累一下
>>i 右移 等同于 /(2的i次方)
<<i 左移 等同于 *(2的i次方)
===============================================================
原本我开了x[MAX]和length[MAX]数组分别来存储每一次输入时的x值和每一个x所在非素数区间的长度,打算最后输出前再一起处理(不像这个代码是输入一个就处理一个),结果却WA了5个点…
欧拉筛没有问题,二分查找和暴力查找都换过了,居然还是稳定5个点WA而且WA的还是同5个点 ,改成和带佬的代码一样输入一个就处理一个后居然就可以过了
百思不得其解,,,