DFS&BFS专题

康复训练向,连暴力都不会,打个?ACM
言归正传,知识点只是简要讲讲,运用在题目里才最重要,能独立写对的话一定是已经理解了。

图遍历算法:(默认用邻接矩阵存图)
DFS(深度优先搜索)
Depth First Search,简单概括就是“有一堆路和路口,一直向下走,走不通就回到上一个路口,换个方向继续走,直到所有路都已走过”。关注点在“深度”,就是选定一条道后就会一直沿着它走,直到走到底才会返回,换方向。
常用于枚举所有方案,时间复杂度为O(n*n),n为邻接矩阵的规模
(其实我个人感觉DFS比BFS容易爆时间复杂度…视具体问题及选用的方法而定)
由于存在递归回溯,所以(隐式地)调用了栈
DFS的具体算法描述为选择一个起始点v作为当前结点,执行如下操作:
a. 访问当前结点,并且标记该结点已被访问,然后跳转到b
b. 如果存在一个和当前结点相邻并且尚未被访问的结点u,则将u设为当前结点,继续执行a
c. 如果不存在这样的u,则进行回溯,回溯的过程就是回退当前结点
图中描述了DFS的遍历方向,以1为出发节点,红色箭头代表遍历方向,蓝色箭头代表回溯方向
在这里插入图片描述
个人认为DFS关键之处在于写对dfs()的状态转移参数以及回溯处理
DFS深究的话还有很多技巧,如合理剪枝以降低时间复杂度等等,以后做到了相关题目再单独在题解里写出来
模板如下

//Matsuri
int move[2][4]={1,-1,0,0,0,0,1,-1}; //上下左右走,具体要根据题意
void dfs(int x) 
{
	if (...) //满足一定条件
	{
		... // 相关处理
		return; // 回溯
	}
	... // 相关处理,如给当前节点打上标记代表已经搜索过
	for (int i=0;i<=3;i++) 
	{
		if (...) // 如果没超界限&没搜索过&其他等等
		{
			... // 相关处理,打标记等等
			dfs(***) //	*关键,填入状态转移方式
			... // 别忘了回溯,把标记“解放”等等
		}
	}
}
int main()
{
	...(输入)
	dfs(0); // 参数一般填初始状态
	return 0;
}

BFS(广度优先搜索)
Breadth First Search,简要概括其实就是DFS里关注的“深度”换成了“广度”,就是搜索到一个节点的时候,接下来总是先搜索离它近的其他节点,也就是说是按照开始所在节点→转移1次即可达到的所有节点→转移2次即可达到的所有节点→…这样的顺序进行搜索,直到所有节点都已被访问过。时间复杂度为O(m*n),m为状态数量,n为状态转移方式
需要显式地用到队列
BFS的具体算法描述为选择一个起始点v放入一个先进先出的队列中,执行如下操作:
a. 如果队列不为空,弹出一个队列首元素,记为当前结点,执行b;否则算法结束
b. 将与当前结点相邻并且尚未被访问的结点的信息进行更新,并且全部放入队列中,继续执行a
模板如下

//Matsuri
typedef struct
{
	//点的属性,如x,y坐标 
	int x;  //行坐标 
	int y;	//列坐标 
	int cost; //到该点时已有的花费(如时间) 
}node;
queue<node>q;
int move[2][4]={1,-1,0,0,0,0,1,-1}; //上下左右走,具体要根据题意 
void bfs()  
{
	node cur,next;//cur当前节点,next与cur有关的待入队节点
	q.push(startpoint);//首先要让第一个节点入队,然后打上标记(如vis[startpoint]=1) 
	...
	
	while(!q.empty())
	{
		cur=q.front();q.pop;
		if (...)//结束条件,找到满足答案要求的情况了
		{
			......//相关处理 
			break;	
		}
		else
		{
			for (int i=0;i<=3;i++)
			{
				next.x=cur.x+move[0][i];
				next.y=cur.y+move[1][i];
				next.cost=cur.cost+1;
				if (!vis[next.x][next.y]&&...) //检验不越界等等
				{
					q.push(next);
					vis[next.x][next.y]=1;
				} 
			}	
		}	
	}	
} 

在这里插入图片描述
个人认为BFS在原理上比DFS要好理解一些

简单总结:
深搜适合找出所有方案
广搜适合找出最优方案
当图是连通图的时候,只要调用一次BFS/DFS即可遍历图中所有节点;但当图有多个连通分支的时候(即不是所有节点之间都是互通的),要想遍历图中所有点,就必须对每个连通分支调用一次BFS/DFS。这点在题目中很经常体现,要灵活处理。

相关题目及解答
【codevs1294】全排列
【POJ1321】棋盘问题
【POJ2386】Lake Counting
【codevs2801】盖伦的蹲草计划
【POJ2251】Dungeon Master
【POJ3278】Catch That Cow

================================================================
参考资料:
博客 https://blog.csdn.net/WhereIsHeroFrom/article/details/78921973
书籍《挑战程序设计竞赛(第二版)》巫泽俊主译

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值