统计学习方法学习笔记-原始问题与对偶问题

拉格朗日函数

在这里插入图片描述

原始问题

在这里插入图片描述

如果只是求
在这里插入图片描述
我们很容易想到对f(w) 进行求导来解, 但是现在有约束条件,我们想到在高数中学习过带条件的极值该如何求,它是通过定义拉格朗日函数来求的。

构造拉格朗日函数为

在这里插入图片描述在这里插入图片描述
考虑 x的函数

在这里插入图片描述
如果存在一个x,x不满足约束条件,即存在 i 使 ci(x)>0 或者存在j使 hj(x) 不等于0 ,那么当 ci(x)>0时,我们可以使ai->+ ∞ ,或者hj(x) 不等于0时使βjhj(x)->+ ∞ 将其余的aij均取为0 那么就有
在这里插入图片描述而如果所有的x都满足约束条件那
在这里插入图片描述
因为
在这里插入图片描述在x满足约束条件的情况下 ,下面这一项为0
在这里插入图片描述而所有的ci(x) 都小于 0 ,所有的 ai 都大于0
在这里插入图片描述这一项是负数,我们通过调整ai来尽量使这一项趋近于0,那这时 L(x,a,β) 最大 等于 f(x).

因此
在这里插入图片描述
所以如果考虑极小化问题

在这里插入图片描述它是与原始最优化问题 等价的,即它们有相同的解。

所以原始问题就转换为了

在这里插入图片描述
对偶问题

在这里插入图片描述
在这里插入图片描述
原始问题与对偶问题的关系

定理 若原始问题和对偶问题都有最优值 ,那么

在这里插入图片描述证明如下
在这里插入图片描述
在这里插入图片描述由于原始问题和对偶问题均有最优值,则
在这里插入图片描述所以

在这里插入图片描述由上面我们可以得到原始问题的最优值 大于等于对偶问题的最优值。但是我们要通过对偶问题来求解原始问题,就必须使得原始问题的最优值与对偶问题的最优值相等,于是可以得出下面的推论

设 x* 和 α* 和 β* 分别是原始问题 和对偶问题的可行解,并且 d* = p* , 则 x* 和 α* 和β* 分别是原始问题和对偶问题的最优解

当原始问题和对偶问题的最优值相等: d* = p* 时,可以用求解对偶问题来求解原始问题。那么什么情况时 p* =d*?

下面介绍两个定理

定理 C.2 考虑原始问题和对偶问题 。假设函数 f(x) 和 ci(x) 是凸函数, hj(x) 是仿射函数;并且假设不等式约束 ci(x)是严格可行的, 即存在 x, 对所有 i 有 ci(x)<0 , 则存在 x* ,a* , β * , 使 x* 是原始问题的解, α*, ß* 是 对偶问题的解, 并且 p* =d* = L(x* , a* ,β*)

定理 C.3 对原始问题 和对偶问题,假设函数 f(x) 和 ci(x)是凸函数,hj(x)是仿射函数,并且不等式约束ci(x) 是严格可行的,则 x* 和 α*,ß* 分别是原始问题和对偶问题的解的充分必要条件是 x* ,a* ,ß* 满足下面的 Karush-Kuhn-Thcker (KKT) 条件:
在这里插入图片描述

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值