拉格朗日对偶性

1.原始问题

假设f(x)g_{i}(x)h_j(x)是定义在R^n上的连续可微函数,约束最优化问题(原始问题)如下:

\min_{x}f(x)

s.t.   g_i(x)\leq 0    i=1,2,...,k

        h_j(x)=0   j=1,2,...,l

 

引进广义拉格朗日函数:

L(x,\alpha ,\beta ) = f(x)+\sum_{j=1}^{l}\beta _{j} h_{j}(x)+\sum_{j=1}^{k}\alpha _{i}g_{i}(x)  

\alpha_{i}\geq 0\beta _{j}是拉格朗日乘子。

 

关于x的函数:

\theta _p(x) = \max_{\alpha, \beta }L(x,\alpha ,\beta )           

所以:

{\color{Red} {\color{Red} }\min_{x}f(x) = \min_{x}\max_{\alpha, \beta }L(x,\alpha ,\beta )}     

原始问题就是广义拉格朗日的极小极大问题(与原问题等价),是关于变量x的函数。

定义原始问题的最优值:

p^*=\min_{x}\theta _p(x)=\min_{x}\max_{\alpha, \beta }L(x,\alpha ,\beta )

2.对偶问题

定义:

\theta _D(\alpha ,\beta ) = \min_xL(x,\alpha ,\beta )   

极大化:

\max_{\alpha ,\beta }\theta _D(\alpha ,\beta ) = \max_{\alpha ,\beta }\min_xL(x,\alpha ,\beta ) 

s.t.    \alpha _i\geq 0   i=1,2,...,k

 形成广义拉格朗日的极大极小问题(对偶问题),是关于变量\alpha ,\beta的函数。

定义对偶问题的最优值:

d^*=\max_{\alpha ,\beta }\theta _D(\alpha ,\beta ) = \max_{\alpha ,\beta }\min_xL(x,\alpha ,\beta )

3.原始问题与对偶问题的关系

定理1:

d^*= \max_{\alpha ,\beta }\min_xL(x,\alpha ,\beta )\leq \min_{x}\max_{\alpha, \beta }L(x,\alpha ,\beta )=p^*

推论1:

x^*,\alpha ^*,\beta ^*分别是原始问题和对偶问题的可行解,并且d^*=p^*,则x^*,\alpha ^*,\beta ^*分别是原始问题和对偶问题的最优解。这说明可以用解对偶问题替代解原始问题。

定理2:

考虑原始问题和对偶问题,假设

(1)函数f(x)g_i(x)是凸函数

(2)h_j(x)是仿射函数

(3)假设约束g_i(x)\leq 0严格成立

则存在x^*,\alpha ^*,\beta ^*,使得x^*是原始问题的解,\alpha ^*,\beta ^*是对偶问题的解,并且:

   d^*=p^*= L(x^*,\alpha ^*,\beta ^*)

定理3:

在定理2的(1)(2)(3)条件下,x^*,\alpha ^*,\beta ^*分别是原始问题和对偶问题的解的充分必要条件是x^*,\alpha ^*,\beta ^*满足KKT条件:

\triangledown _xL(x^*,\alpha ^*,\beta ^*)=0

\triangledown _\alpha L(x^*,\alpha ^*,\beta ^*)=0

\triangledown _\beta L(x^*,\alpha ^*,\beta ^*)=0

\alpha _i^*g_i(x^*)=0

g_i(x^*)\leq0

\alpha _i^*\geq 0

h_j(x^*)=0

总结:

1.原始问题可以写成广义拉格朗日的极小极大问题,其对偶问题是广义拉格朗日的极大极小问题,问题间的转换实质是函数自变量的转换。

2.如果满足定理2,则可以通过解对偶问题得到原始问题的解,因为有时候解对偶问题比解原始问题容易。

3.在定理二成立的情况下,定理3给出了寻找最优解的具体方法,即套用KKT条件,解方程组。

参考:《统计学习方法》 李航

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值