一 马尔可夫随机场
定义
设有联合概率分布 P(Y), 由无向图 G = (V, E) 表示,在图 G 中,结点表示随机变量,边表示随机变量之间的依赖关系 。 如果联合概率分布 P(Y) 满足成对、局部或全局马尔可夫性,就称此联合概率分布为概率无向图模型或马尔可夫随机场 。
其中成对,局部,全局马尔可夫性有如下定义:
成对马尔可夫性: 设u和v是无向图中任意两个没有连接的结点,对应随机变量Yu Yv, 其他所有结点为O,对应一个随机变量组,则
局部马尔可夫性: v 是无向图中的任意一个结点,随机变量是Yv 。W是与v有连接的所有结点,随机变量是YW。O是其余结点,随机变量为YO。 则
全局马尔可夫性: 设在无向图中结点集合 A,B 是被结点集合C分开的任意结点集合 (如下图所示),其随机变量分别记为YA,YB,YC. 则
二 条件随机场
条件随机场定义
设 X 与 Y 是随机变量, P(YIX) 是在给定 X 的条件下 Y 的条件概率分布。若随机变量 Y 构成一个由无向图 G = (V, E) 表示的马尔可夫随机场, 即
对任意结点v成立,则称条件概率分布 P(YIX) 为条件随机场。其中w ~ v是指 w为在无向图G中与v相连的所有结点.Y u,Yw 是结点u,w代表的随机变量。
线性链条件随机场
这里我们主要介绍一种特殊的条件随机场,称为线性链条件随机场,其主要用于标注问题。
线性链条件随机场的结构如下:
线性链条件随机场的定义如下:
设 X = (X1,X2,… ,Xn ), Y = (Y1,Y2,…,Yn) 均为线性链表示的随机变量序列,若在给定随机变量序列 X 的条件下,随机变量序列Y 的条件概率分布 P(YIX) 构成条件随机场, 即满足马尔可夫性
则称 P(YIX) 为线性链条件随机场。
将线性链条件随机场用于标注问题时,在条件概率模型P(Y|X) 中,Y是输出变量表示标记序列(也称状态序列),X是输入变量,表示需要标注的观测序列。
比如我们要给一个已经分好词的句子中的每一个词标注词性, 句子如下:
小花 / 是 / 一个 / 漂亮的/ 女孩子
上述句子就是一个观测序列。而它的词性序列 名词 动词 量词 形容词 名词 就是一个标记序列。