【FIRE】Fast Incremental Recommendation with Graph Signal Processing

FIRE

code

dataloader

对数据集进行预处理,并根据超参数进行增量学习。

get_user_item_sim_mat
get_sim_mat
get_init_mats
get_train_test_data
get_date_from_timestamp

metric

计算衡量指标 F1、MRR、NDCG三项指标。
calculate_precision_recall_f1()
calculate_mrr()
calculate_ndcg()

analyse

MovieLens 1M

将ratings.csv数据集划分为训练集和测试集。

比如:ratings.csv中共有892982条数据,其中777387条用作训练,115595用作测试。

测试集包含两部分:

  • historical records: 488938 条记录
  • current records: 288449 条记录
dataframeuirtm
00049571104200
10149571104200
20249571104200
30349571104200
40459571104440
77738252896259755999526
777383528948839755999686
7773845289138259755999686
7773855289119549755999856
777386528986259755999856

测试集如下:

dataframeuirtm
05289102529756000097
15289147449756000097
2528912359756000097
34371228759756000147
45289109449756000297
115590185533449782761357
115591185529849782761657
115592185531349782761977
115593185579939782762267
1155941855171019782762647

衡量指标:F1、MRR、NDCG
与最先进的增量推荐算法(BPR、IFM、SML等)相比,FIRE 可以大幅提高准确性。

Test metrics:

  • Top5: F1:0.0699 MRR:0.4218 NDCG:0.4713
  • Top10: F1:0.1120 MRR:0.4105 NDCG:0.4805

而且,将模型更新效率提高至少3倍。

Time info:

  • Training phase consumes: 1.93 s
  • Test phase consumes: 21.50 s
  • Total time consumes: 23.43 s

Douban Movie

测试集包含两部分:

  • historical records: 681171 条记录
  • current records: 103876 条记录
dataframeuirtm
09162444311991180640
19622194311991190690
28421137511991194730
34092920411991205680
44603100411991231260
78504272831748515147354969
78504383828705315147355739
78504482754330315147356399
78504522969264215147358069
78504622968920315147359339

测试集如下:

dataframeuirtm
0544287522151473641710
1829153465151473643510
2188491615151473646610
3419927655151473647910
4936591262151473659010
216866294079404156783780511
216867810899975156783791911
21686861576544156783896211
216869129413634156783943611
216870986142944156783956811

下面是Douban数据集的性能指标。
Test metrics:

  • Top5: F1:0.0094 MRR:0.0272 NDCG:0.0348
  • Top10: F1:0.0127 MRR:0.0305 NDCG:0.0456

Time info:

  • Training phase consumes: 5.86 s
  • Test phase consumes: 249.54 s
  • Total time consumes: 255.40 s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫余

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值