J. Han, K. Liang, B. Zhou, X. Zhu, J. Zhao, and L. Zhao, “Infrared small target detection utilizing the multiscale relative local contrast measure,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 4, pp. 612–616, 2018, doi: 10.1109/LGRS.2018.2790909.
笔记作者:瀚
2023春 于国防科大
glinglilee@outlook.com
I. 核心思想
是基于鲁棒人类视觉系统(robust Human Visual System)的算法
首先对原始红外图像的每个像素计算多尺度RLCM,作者认为这样做可以增强真实目标并同时抑制所有类型的干扰(包括高亮度背景、复杂背景边缘和PNHB)
做一个多尺度RLCM就抑制所有类型干扰,包括高亮背景、复杂背景边缘和高亮噪声.对了,文末有缩写查找表,比如PNHB。这样我就不用每次把全拼拼出来了,你也不用每次都去第一次出现的地方查缩写的意思。
然后,应用自适应阈值来提取真实目标
II. 作者为什么会提出该算法
A. The disadvantage of the traditional algorithm
基于鲁棒人类视觉系统(HVS)特性的检测算法使用 对比度 而不是 亮度 作为目标提取的依据。那么显然对于 对比度 的定义和计算尤为重要。
作者认为传统的对比度定义可以归为两类:
- difference form 差分形式
将局部中心与局部周围的差分作为局部对比度,对背景进行抑制。
- ratio form 比例形式
首先计算局部中心与局部周围的比值作为增强因子,然后将增强因子与局部中心值的乘积作为局部对比度。
作者认为对于先前的算法,差分形式的这些算法可以有效消除高亮度背景,但不能有效增强小目标。而比例形式的这些算法可以有效地增强目标,但它们使用的是绝对局部对比度,不能有效消除高亮度背景。
一些改进是结合预处理,如 DoG 或 LoG 。然而,检测的鲁棒性可能会被破坏,因为预处理中的任何错误都会干扰结果,即预处理会使图像“失真”。
B. The advantage of the algorithm in this paper
作者提出了一种利用多尺度相对局部对比度测量(RLCM)的红外小暗目标检测算法。
能够在复杂背景下有效处理 不同大小 的小目标
不需要预处理算法消除高亮度背景,鲁棒性得到保证。
此外,所提出的算法具有 并行处理的潜力(我们对此很感兴趣),这对于提高检测速度非常有用
III. 算法介绍
A. 模型的构建
模型中重要的是进行多尺度RLCM计算,这里从 多尺度、RLCM算法、抗干扰分析 这些方面展开
RLCM算法
设置9个窗格(patch window),窗格大小近似于目标尺寸,对原IR图进行从左到右从上到下进行划窗。类似做卷积操作时的划窗。
既然类似卷积,我们就需要进行 patch window 中心窗格(cell(0))内中心点值的计算,定义为:
R
L
C
M
=
m
i
n
(
I
m
e
a
n
0
I
m
e
a
n
i
I
m
e
a
n
0
−
I
m
e
a
n
0
)
,
i
=
1
,
2
,
.
.
.
,
8
I
m
e
a
n
0
I
m
e
a
n
i
=
f
i
(*)
RLCM=min(\frac{I_{mean_0}}{I_{mean_i}}I_{mean_0}-I_{mean_0}), \quad i=1,2,...,8 \newline \frac{I_{mean_0}}{I_{mean_i}}=f_i \tag{*}
RLCM=min(ImeaniImean0Imean0−Imean0),i=1,2,...,8ImeaniImean0=fi(*)
f
i
f_i
fi 可以理解为中心cell的增强因子,
I
m
e
a
n
0
I_{mean_0}
Imean0 或
I
m
e
a
n
i
I_{mean_i}
Imeani 表示 cell(0) 或 cell(i) 中前 K1 或前 K2 个最大像素的平均灰度,表示如下:
I
m
e
a
n
0
=
1
K
1
∑
j
=
1
K
1
G
0
j
I
m
e
a
n
i
=
1
K
2
∑
j
=
1
K
2
G
i
j
,
i
=
1
,
2
,
.
.
.
,
8
I_{mean_0} = \frac{1}{K_1}\sum\limits_{j=1}^{K_1}G^j_0 \newline I_{mean_i} = \frac{1}{K_2}\sum\limits_{j=1}^{K_2}G^j_i, \quad i=1,2,...,8
Imean0=K11j=1∑K1G0jImeani=K21j=1∑K2Gij,i=1,2,...,8
每一个窗格可能包含了很多像素,将这些像素从大到小进行排序,其中
G
0
j
G^j_0
G0j 或
G
i
j
G^j_i
Gij是cell(0)或cell(i)的第j个最大灰度值,如下图所示(G^1_0就是
G
0
1
G^1_0
G01,
LaTeX
\LaTeX
LATEX)。那么就像这个变量名一样,
I
m
e
a
n
i
I_{mean_i}
Imeani是cell(i)内最大的K个像素的均值。
K1 和 K2 是可调控参数,为了获得更大的 f i f_i fi 建议将K2设置为略大于K1的值。
因为这样子就相当于拉低了cell(i)的像素均值,而cell(0)的像素均值很大,相除后的值也很大。
RLCM对于高亮度背景、复杂背景边缘和PNHB抑制分析
分析(*)式,不难得出
-
对于明显的小目标T,有 R L C M T > 0 RLCM_T>0 RLCMT>0。
-
对于背景B,有 R L C M B ≈ 0 RLCM_B\approx 0 RLCMB≈0。
那么优点显而易见:可以在抛弃背景的同时增强小目标
- 对于边缘E,认为边缘是沿着特定方向分布,所以在(*)式中有 m i n ( ) min() min()操作,以排除某个方向上的边缘情况,在窗内存在边缘的时候,有 R L C M E ≤ 0 RLCM_E\le 0 RLCME≤0
- 对于PNHB,由于K和均值的存在,使得某个噪声像素的高亮被平均,而目标占据的像素更多,即使平均也可以有较大的收益,所以并不影响算法效果,有 R L C M T > R L C M P N H B RLCM_T> RLCM_{PNHB} RLCMT>RLCMPNHB
综上所述,作者认为这些干扰都会被自己的算法所抑制。
多尺度RLCM算法
相信仔细看过式(*)的同学可以看出来,K1和K2是两个很重要的参数,一定程度上他们值的选取和算法的效果好坏有直接的关系。对于不可预先得知的不同尺寸的目标,K1和K2的取值也是要动态变化的。女士们先生们,introducing:多尺度RLCM算法
多尺度RLCM主要就是
- 选取L个scale ( s = 1 , 2 , . . , L ) (s=1,2,..,L) (s=1,2,..,L)
- 对于不同的scale选取不同的 K 1 s , K 2 s K_{1s},K_{2s} K1s,K2s
对于每个 scale 都要根据经验进行 K 的选择,这似乎是一件会使算法可靠性下降的事情。
- 某个像素最终的取值为
S M ( i , j ) = m a x ( R L C M s ( i , j ) ) , s = 1 , 2 , . . . , L SM(i,j)=max(RLCM_s(i,j)), \quad s=1,2,...,L SM(i,j)=max(RLCMs(i,j)),s=1,2,...,L
其中SM(i,j)表示(i,j)像素在输出显著性图SM上的坐标。显然,这表示需要取不同尺度下该像素的最大值,认为最大时的尺度为合适目标的尺度。
B. 算法的优化
算法的性能或效果和 分割阈值选取、算力或资源投入 有关
并行性
那么之前所说该算法具有 并行性 潜能就表现在这里。首先是不同尺度的计算可以并行计算(scale level),其次是相同尺度下的每一个方向的增强因子,即窗格1~8可以并行计算(patch-window level),最后是对于每一个原始图像的像素的RLCM的计算可以并行(pixel level)。
但是注意前面提到的公式:
R
L
C
M
=
m
i
n
(
I
m
e
a
n
0
I
m
e
a
n
i
I
m
e
a
n
0
−
I
m
e
a
n
0
)
,
i
=
1
,
2
,
.
.
.
,
8
S
M
(
i
,
j
)
=
m
a
x
(
R
L
C
M
s
(
i
,
j
)
)
,
s
=
1
,
2
,
.
.
.
,
L
RLCM=min(\frac{I_{mean_0}}{I_{mean_i}}I_{mean_0}-I_{mean_0}), \quad i=1,2,...,8 \newline SM(i,j)=max(RLCM_s(i,j)), \quad s=1,2,...,L
RLCM=min(ImeaniImean0Imean0−Imean0),i=1,2,...,8SM(i,j)=max(RLCMs(i,j)),s=1,2,...,L
可以得到,不同方向的结果导致像素的结果,不同尺度的结果导致SM图的结果。所以 “不同像素并行” 和 “不同方向并行” 两个操作是不能并行的,但两者的内部操作是可以并行的。
阈值选取
作者采用自适应阈值进行划分:
T
h
r
e
s
h
o
l
d
=
μ
S
M
+
k
t
h
⋅
σ
S
M
Threshold=\mu_{SM}+k_{th}\cdot\sigma_{SM}
Threshold=μSM+kth⋅σSM
其中
μ
S
M
、
σ
S
M
\mu_{SM}、\sigma_{SM}
μSM、σSM是SM的标准差和方差,
k
t
h
k_{th}
kth是给定参数,实验表明其最佳取值为2~9。在SM图上大于Threshold的值被保留,其他的被抛弃。
IV. 基于该算法的实际测试
待补充
题外话
a multi-scale detection algorithm utilizing the Relative Local Contrast Measure (RLCM)
使用 RLCM 的一种多尺度探测算法
RLCM算法中的纹理特征是通过考虑每个像素周围的灰度值排序来计算的,因此它可以表示该像素所在区域的纹理信息。这是因为在图像中,纹理信息通常表现为相邻像素之间的灰度变化,如同一物体表面的微小细节、边缘和纹理纹理等。
RLCM算法中的纹理特征可以反映像素周围灰度变化的程度和方向,可以提取图像中的纹理信息,用于红外小目标检测中。在RLCM算法中,使用多个不同尺度的窗口来计算每个像素的纹理特征,这样可以捕捉不同尺度的纹理信息,进一步提高算法的性能。
缩写查找表
PNHB: Pixel-sized Noises with High Brightness
IR: Infrared
HVS: Human Visual System
RLCM: Relative Local Contrast Measure. bro,这是算法名,就是个名字而已,就像我不需要知道特朗普三个字到底是什么意思一样。