x_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))和trainX_input = np.reshape(tra

本文解释了在使用Keras进行机器学习时,如何通过np.reshape函数将数据转换为适合时间序列预测的[samples,steps,features]格式,特别关注单变量预测中的一维特征处理。
摘要由CSDN通过智能技术生成
x_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))和trainX_input = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
对于keras,数据是reshape成[samples, steps, features],
X_train.shape[0]表示有几行样本----samples
X_train.shape[1]表示有几列样本,就是当时划分时候的步数----steps
对于单变量的预测,也就是一列X,特征就是1
所以,应该用x_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

资料:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值