零钱兑换

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

思路:

集合状态表示 dp[i][j] 表示由前i种硬币组成金额为j的方案数
    状态计算 考虑dp[i][j]的最后一步 即第i种硬币选几个从而凑成金额j 假设选k个 k = 0,1,...,j/c[i]
     dp[i][j] = dp[i-1][j] + dp[i-1][j-c[i]] + ...dp[i-1][j-k*c[i]]
     dp[i][j-c[i]] = dp[i-1][j-c[i]]+dp[i-1][j-2*c[i]],..dp[i-1][j-k*c[i]]
     dp[i][j] = dp[i-1][j]+dp[i][j-c[i]] 
    边界 dp[..][0] = 1 //组成金额0只能都不选 只有一种方案数
    可以使用滚动数组
 而需要 第i层的 j-c[i] < j 所以 每次计算时需要用到这一层之前算过的值 所以应该从左往右算
   dp[j] = dp[j]+dp[j-c[i]]);
 边界dp[0]  = 1;//凑0的方案为1,即都不选

代码:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int n=coins.size();
        int dp[amount+1]={0};
        dp[0]=1;
        for(int i=0;i<n;i++)
            for(int j=coins[i];j<=amount;j++)
                dp[j]+=dp[j-coins[i]];
        return dp[amount];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值