给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
思路:
集合状态表示 dp[i][j] 表示由前i种硬币组成金额为j的方案数
状态计算 考虑dp[i][j]的最后一步 即第i种硬币选几个从而凑成金额j 假设选k个 k = 0,1,...,j/c[i]
dp[i][j] = dp[i-1][j] + dp[i-1][j-c[i]] + ...dp[i-1][j-k*c[i]]
dp[i][j-c[i]] = dp[i-1][j-c[i]]+dp[i-1][j-2*c[i]],..dp[i-1][j-k*c[i]]
dp[i][j] = dp[i-1][j]+dp[i][j-c[i]]
边界 dp[..][0] = 1 //组成金额0只能都不选 只有一种方案数
可以使用滚动数组
而需要 第i层的 j-c[i] < j 所以 每次计算时需要用到这一层之前算过的值 所以应该从左往右算
dp[j] = dp[j]+dp[j-c[i]]);
边界dp[0] = 1;//凑0的方案为1,即都不选
代码:
class Solution {
public:
int change(int amount, vector<int>& coins) {
int n=coins.size();
int dp[amount+1]={0};
dp[0]=1;
for(int i=0;i<n;i++)
for(int j=coins[i];j<=amount;j++)
dp[j]+=dp[j-coins[i]];
return dp[amount];
}
};