常用损失函数

常用的损失函数(Loss Functions)在深度学习中有很多种类,选择取决于问题类型和任务目标。以下是一些常见的损失函数及其在PyTorch中的使用:

  1. 均方误差损失(Mean Squared Error, MSE):

    • 用于回归问题,衡量模型输出与真实值之间的均方误差。
    • PyTorch命令:torch.nn.MSELoss()
  2. 交叉熵损失(Cross Entropy Loss):

    • 用于多分类问题,衡量模型输出的概率分布与真实标签之间的差异。
    • 对于二分类问题,可以使用二元交叉熵损失;对于多分类问题,可以使用多元交叉熵损失。
    • PyTorch命令:torch.nn.CrossEntropyLoss()
  3. 二元交叉熵损失(Binary Cross Entropy Loss):

    • 用于二分类问题,衡量模型输出的概率与真实标签之间的差异。
    • PyTorch命令:torch.nn.BCELoss()
  4. KL散度损失(Kullback-Leibler Divergence Loss):

    • 用于衡量两个概率分布之间的差异,常用于生成对抗网络(GAN)等。
    • PyTorch命令:torch.nn.KLDivLoss()
  5. 平均绝对误差损失(Mean Absolute Error, MAE):

    • 衡量模型输出与真实值之间的平均绝对误差。
    • PyTorch命令:torch.nn.L1Loss()
  6. Huber损失:

    • 介于均方误差和平均绝对误差之间,对离群值不敏感。
    • PyTorch命令:torch.nn.SmoothL1Loss()
  7. 对比损失(Contrastive Loss):

    • 用于学习相似性度量,例如在孪生网络中。
    • PyTorch命令:自定义实现或使用损失库torch.nn.functional中的函数。
  8. 三元组损失(Triplet Margin Loss):

    • 用于学习嵌入向量的相似性,例如在人脸识别中。
    • PyTorch命令:自定义实现或使用损失库torch.nn.functional中的函数
### 图像分类中的常用损失函数 #### 交叉熵损失函数概述 在图像分类任务中,交叉熵损失函数是一种广泛采用的方法。此方法通过衡量预测概率分布与真实标签之间的差异来进行模型优化[^1]。 对于一个多分类问题而言,假设存在\(C\)个类别,则针对单一样本计算其对应的交叉熵损失可表达为: \[ \text{loss} = -\sum_{c=1}^{C}{y_c*\log(\hat{y}_c)} \] 其中,\(y_c\)代表实际标签向量(one-hot编码形式),而\(\hat{y}_c\)则指代由模型给出的概率估计值[^3]。 当处理的是二元分类场景时,上述公式可以简化成另一种表现形式: \[ \text{loss} = -(y * \log{\hat{y}} + (1-y)*\log{(1-\hat{y})}) \] 这里的\(y\)是目标变量,\(\hat{y}\)则是预测的结果[^4]。 值得注意的是,在实践中为了防止取对数运算过程中遇到数值不稳定的情况(比如输入接近于零),通常会对原始输出应用softmax激活层转换得到合法的概率分布后再求解交叉熵损失[^2]。 ```python import torch.nn.functional as F def cross_entropy_loss(input, target): # Apply softmax to get probabilities and then calculate the negative log likelihood loss. return F.cross_entropy(input, target) ``` 除了交叉熵之外,还有其他类型的损失函数可用于评估多分类性能,例如合页损失(hinge loss),它主要用于支持向量机(SVMs)框架下的分类任务;然而,在现代深度学习架构特别是卷积神经网络(CNNs)里,由于softmax加交叉熵组合能够提供更优的学习信号并促进梯度传播效率,因此成为主流选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值