OpenCV—数据结构与基本绘图(一)

第4章:OpenCV数据结构与基本绘图


一、基础图像容器Mat

1、数字图像存储概述

我们通过显示屏看到的图像是由数字设备记录的图像中的每个点的数值。

在这里插入图片描述

2、Mat结构的使用

(1)优点:

  • 不必要再动手为其开辟空间
  • 不必再不需要时立马将空间释放

(2)Mat简介:

Mat是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸、存储方法、存储地址等信息)和一个指向存储所有像素值的矩阵的指针。矩阵头的尺寸是常数值,但矩阵本身的尺寸会依图像的不同而不同,通常比矩阵头的尺寸大数个数量级。所以,创建图像副本时,大的开销时由矩阵造成的,而不是信息头。

为了解决以上开销大的问题,OpenCV使用了引用计数机制:让每个Mat对象有自己的信息头,通过矩阵指针指向同一地址,让它们共享一个矩阵。

Mat A,C;//仅创建信息头部分
A=imread("1.jpg",CV_LOAD_IMAGE_COLOR);//为矩阵开辟内存
Mat B(A);//使用拷贝构造函数
C=A;//赋值运算符

以上代码中的所有Mat对象最终都指向同一个也是唯一一个数据矩阵。

附加:

  • 可以创建只引用部分数据的信息头
Mat D (A,Rect(10,10,100,100));//使用矩形界定
Mat E=A(Range:all(),Range(1,3));//用行和列界定
  • 若是矩阵属于多个Mat对象,通过引用计数机制来实现,复制一次Mat对象的信息头,增加一次引用次数。当一个头释放后,计数减一;计数为0时,矩阵就会被清理。

  • 此时若想复制矩阵本身(不只是信息头和矩阵指针)

Mat A;
//Mat F = A.clone();
Mat F;
A.copyTo(F);

(3)补充:上面(1)和(2)的内容是书上讲的,新手小白看的不是很懂,可以去b站了解一下。

3、像素值的存储方法

说明:存储像素值需要指定颜色空间和数据类型。颜色系统如下:

  • RGB颜色空间是最常用的一种颜色空间,他的基色是红色、绿色和蓝色,表示透明的颜色也会加入第四个颜色alpha
  • HSV和HLS把颜色分解成色调、饱和度和亮度。

每个组成元素都有自己的定义域,而定义域取决于其数据类型。符号型(0-255)和无符号型(-127-127)

4、显示创建Mat对象的七种方法(初始化)

(1)使用Mat()构造函数

Mat M(2,2,CV_8UC3,Scalar(0,0,255));
cout<<"M= "<<endl<<" "<<M<<endl<<endl;

在这里插入图片描述
CV_[位数] [带符合与否] [类型前缀] C[通道数] :

如:CV_8UC3:表示8位的unsigned char型,每个像素由三个元素组成的三通道。

(2)在C/C++中通过构造函数进行初始化

下面代码讲述如何创建一个超过两维的矩阵:指定维数,然后传递一个指向一个数组的指针,这个数组包含每个维度的尺寸,后面两个参数与(1)方法一致。

int sz[3]={2,2,2};
Mat L(3,sz,CV_8UC,Scalar::all(0));

说明:Scalar是一个short型的向量,能使用指定的定制化值来初始化矩阵,还可以用于表示颜色。

(3)为已经存在的IplImage指针创建信息头

IplImage* img=cvLoadImage("12.jpg",1);
Mat mtx(img);//转化IplImage*->Mat

(4)利用Create()函数

说明:利用Mat类中的Create()成员函数进行Mat类的初始化操作

M.create(4,4,CV_8UC(2));
printf("M= \n");
cout << m << endl<<endl;

(5)采用Matlab式的初始化方式

说明:采用Matlab形式的初始化方式:zeros(),ones(),eyes()。

Mat E=Mat::eye(4,4,CV_64F);
cout<<"E = "<<endl<<" "<<E<<endl<<endl;

在这里插入图片描述

Mat O=Mat::ones(2,2,CV_32F);
cout<<"O = "<<endl<<" "<<O<<endl<<endl;

在这里插入图片描述

Mat Z=Mat::zeros(3,3,CV_8UC1);
cout<<"Z = "<<endl<<" "<<Z<<endl<<endl;

在这里插入图片描述
(6)对小矩阵使用逗号分隔符初始化函数

Mat C=(Mat_<double>(3,3)<<0,-1,0,-1,5,-1,0,-1,0);
cout<<"C= "<<endl<<" "<<C<<endl<<endl;

在这里插入图片描述
(7)为已存在的对象创建新信息头

说明:使用成员函数clone()或者copyTo()为一个已经存在的Mat对象创建一个新的信息头

Mat RowClone=C.row(1).clone();
cout<<"RowClone= "<<endl<<" "<<RowClone<<endl<<endl;

5、OpenCV中的格式化输出方式

首先对于r矩阵的定义,通过randu()函数产生的随机值来填充矩阵,定一个上下限来确保随机值在期望范围内:

Mat r = Mat(10,3,CV_8UC3);//10代表10行,3表示几个通道;后面3表示每个通道数量
randu(r,Scalar::all(0),Scalar::all(255));

(1)OpenCV默认

cout<<"r(opencv默认) = "<<r<<";"<<endl<<endl;

在这里插入图片描述
(2)python风格

cout<<"r(python)风格= "<<format(r,Formatter::FMT_PYTHON)<<";"<<endl<<endl;

在这里插入图片描述
(3)逗号分隔风格(CSV)

cout<<"r(逗号分隔风格)= "<<format(r,Formatter::FMT_CSV )<<";"<<endl<<endl;
//format格式化

在这里插入图片描述
(4)Numpy风格

cout<<"r(Numpy风格)= "<<format(r,Formatter::FMT_NUMPY )<<";"<<endl<<endl;
//format格式化

在这里插入图片描述
(5)C语言风格

cout<<"r(C风格)= "<<format(r,Formatter::FMT_C )<<";"<<endl<<endl;

在这里插入图片描述

6、输出其他常用的数据结构

(1)定义和输出二维点

Point2f p(6,2);
cout<<"【二维点】p= "<<p<<";"<<endl;

在这里插入图片描述
(2)定义和输出三维点

Point3f p(6,2,0);
cout<<"【三维点】p3f= "<<p3f<<";\n"<<endl;

在这里插入图片描述
(3)定义和输出基于Mat的std::vector(vector是一个能够存放任意类型的动态数组,能够增加和压缩数据.)

vector<float> v;
v.push_back(3);
v.push_back(5);
v.push_back(7);
cout<<"【基于Mat的vector】shortvec= "<<Mat(v)<<";\n"<<endl;

在这里插入图片描述
(4)定义和输出std::vector点(以存放Point2f为例)

vector<Point2f>point(20);
for(size_t i=0;i<points.size();i++){
    points[i]=Point2f((float)(i*5),(float)(i%7));
    cout<<"【二维点向量】points = "<<points<<";"<<endl;
}

在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 一、简介 1.1 1、OpenCV的特点 1.1.1 (1) 总体描述 1.1.2 (2) 功能 1.1.3 (3) OpenCV模块 1.2 2、有用的学习资源 1.2.1 (1) 参考手册: 1.2.2 (2) 网络资源: 1.2.3 (3) 书籍: 1.2.4 (4) 视频处理例程(在 <opencv-root>/samples/c/): 1.2.5 (5) 图像处理例程 (在 <opencv-root>/samples/c/): 1.3 3、OpenCV 命名规则 1.3.1 (1) 函数名: 1.3.2 (2) 矩阵数据类型: 1.3.3 (3) 图像数据类型: 1.3.4 (4) 头文件: 1.4 4、编译建议 1.4.1 (1) Linux: 1.4.2 (2) Windows: 1.5 5、C++例程 2 二、GUI 指令 2.1 1、窗口管理 2.1.1 (1) 创建和定位一个新窗口: 2.1.2 (2) 载入图像: 2.1.3 (3) 显示图像: 2.1.4 (4) 关闭窗口: 2.1.5 (5) 改变窗口大小: 2.2 2、输入处理 2.2.1 (1) 处理鼠标事件: 2.2.2 (2) 处理键盘事件: 2.2.3 (3) 处理滑动条事件: 3 三、OpenCV基本数据结构 3.1 1、图像数据结构 3.1.1 (1) IPL 图像: 3.2 2、矩阵与向量 3.2.1 (1) 矩阵: 3.2.2 (2) 一般矩阵: 3.2.3 (3) 标量: 3.3 3、其它结构类型 3.3.1 (1) 点: 3.3.2 (2) 矩形框大小(以像素为精度): 3.3.3 (3) 矩形框的偏置和大小: 4 四、图像处理 4.1 1、图像的内存分配与释放 4.1.1 (1) 分配内存给一幅新图像: 4.1.2 (2) 释放图像: 4.1.3 (3) 复制图像: 4.1.4 (4) 设置/获取感兴趣区域ROI: 4.1.5 (5) 设置/获取感兴趣通道COI: 4.2 2、图像读写 4.2.1 (1) 从文件中读入图像: 4.2.2 (2) 保存图像: 4.3 3、访问图像像素 4.3.1 (1) 假设你要访问第k通道、第i行、第j列的像素。 4.3.2 (2) 间接访问: (通用,但效率低,可访问任意格式的图像) 4.3.3 (3) 直接访问: (效率高,但容易出错) 4.3.4 (4) 基于指针的直接访问: (简单高效) 4.3.5 (5) 基于 c++ wrapper 的直接访问: (更简单高效) 4.4 4、图像转换 4.4.1 (1) 字节型图像的灰度-彩色转换: 4.4.2 (2) 彩色图像->灰度图像: 4.4.3 (3) 不同彩色空间之间的转换: 4.5 5、绘图指令 4.5.1 (1) 绘制矩形: 4.5.2 (2) 绘制圆形: 4.5.3 (3) 绘制线段: 4.5.4 (4) 绘制一组线段: 4.5.5 (5) 绘制一组填充颜色的多边形: 4.5.6 (6) 文本标注: 5 五、矩阵处理 5.1 1、矩阵的内存分配与释放 5.1.1 (1) 总体上: 5.1.2 (2) 为新矩阵分配内存: 5.1.3 (3) 释放矩阵内存: 5.1.4 (4) 复制矩阵: 5.1.5 (5) 初始化矩阵: 5.1.6 (6) 初始化矩阵为单位矩阵: 5.2 2、访问矩阵元素 5.2.1 (1) 假设需要访问一个2D浮点型矩阵的第(i, j)个单元. 5.2.2 (2) 间接访问: 5.2.3 (3) 直接访问(假设矩阵数据按4字节行对齐): 5.2.4 (4) 直接访问(当数据的行对齐可能存在间隙时 possible alignment gaps): 5.2.5 (5) 对于初始化后的矩阵进行直接访问: 5.3 3、矩阵/向量运算 5.3.1 (1) 矩阵之间的运算: 5.3.2 (2) 矩阵之间的元素级运算: 5.3.3 (3) 向量乘积: 5.3.4 (4) 单一矩阵的运算: 5.3.5 (5) 非齐次线性方程求解: 5.3.6 (6) 特征值与特征向量 (矩阵为方阵): 6 六、视频处理 6.1 1、从视频流中捕捉一帧画面 6.1.1 (1) OpenCV 支持从摄像头或视频文件(AVI格式)中捕捉帧画面. 6.1.2 (2) 初始化一个摄像头捕捉器: 6.1.3 (3) 初始化一个视频文件捕捉器: 6.1.4 (4) 捕捉一帧画面: 6.1.5 (5) 释放视频流捕捉器: 6.2 2、获取/设置视频流信息 6.2.1 (1) 获取视频流设备信息: 6.2.2 (2) 获取帧图信息: 6.2.3 (3) 设置从视频文件抓取的第一帧画面的位置: 6.3 3、保存视频文件 6.3.1 (1) 初始化视频编写器: 6.3.2 (2) 保持视频文件: 6.3.3 (3) 释放视频编写器:
第1章 Java概述、安装及简易教学 14 1-1 Java概述 14 1-2 Java安装 16 1-3 Eclipse安装 18 1-4 GUI设计工具WindowBuilder 18 1-5 在Eclipse开发第一个Java程式 23 1-6 在Eclipse开发第一个Java视窗程式-显示影像 26 1-7 在Eclipse开发视窗程式-slider控制元件 34 1-8 在Eclipse开发视窗程式-按钮控制元件 39 1-9 好用的Eclipse热键 41 第2章 OpenCV概述、安装及设定 42 2-2 关于OpenCV 3.0及3.1 43 2-3 使用Java开发OpenCV的缺点 45 2-4 OpenCV的下载及安装 45 2-5 Eclipse设定OpenCV开发环境 46 2-6 整合Java之Eclipse与OpenCV 49 2-7 开发第一个OpenCV程式 51 2-8 建立矩阵 52 范例2-8-1 建立第一个opencv的矩阵,使用阵列 53 范例2-8-2 建立opencvMat矩阵方法2 55 范例2-8-3 方法3以单一元素指定 56 范例2-8-4 方法4全部以同一元素指定 57 范例2-8-5 方法5以个别单一元素指定 58 范例2-8-6 方法6以1维阵列指定建立 59 第3章 OpenCV基础数学计算 60 范例3-1-1 矩阵的线性代数计算1 60 范例3-1-2 矩阵的矩阵线性代数计算2-加减乘除处理 62 范例3-1-3 矩阵的矩阵线性代数计算3 65 范例3-2-1 矩阵的统计方面计算1 68 范例3-2-2矩阵的统计方面计算2 69 范例3-3-1 矩阵其他数学计算 72 第4章 影像基本输出输入处理 78 范例4-1-1 Opencv读取写入练习 79 范例4-1-2 Opencv读取影像并显示至视窗 81 范例4-1-3 Opencv读取影像显示至视窗-版本2 84 范例4-1-4影像储存压缩品质选择 87 范例4-2-1 Opencv使用webcam拍照,并存放置资料匣 89 范例4-2-2 使用webcam拍照明亮版-并存放影像在资料匣 90 范例4-2-3 使用webcam读取动态影像至Java Swing视窗 91 范例4-2-4 使用webcam读取动态影像至Java Swing视窗2 92 范例4-2-5 手动拍照 94 范例4-2-6 使用webcam录制影片档 96 范例4-2-7 使用xuggle录制电脑画面 99 范例4-2-8 使用Opencv API录制影片档案 102 范例4-3-1 Opencv API拨放影片档案,使用Panel 104 范例4-3-2 Opencv API拨放影片档案,不使用Panel 105 范例4-4-1从IPCam读取网路串流影像 107 范例4-4-2从IPCam拍摄照片 108 第5章 影像基本处理 109 范例5-1-1使用ConvertTo调整影像明亮度 109 范例5-1-2使用ConvertTo及GUI元件调整影像明暗度 110 范例5-1-3使用addWeighted及GUI元件调整影像明亮度 111 范例5-1-4改变影像的每1个像素调整影像明亮度 112 范例5-2-1全彩图转灰阶图 113 范例5-3-1影像颜色相反,使用Bitwise_xor 114 范例5-3-2影像颜色相反,使用subtract 115 范例5-3-3影像颜色相反,使用Bitwise_not 116 范例5-4-1模糊处理-使用Gaussian高斯函数及GUI元件 116 范例5-4-2修正5-4-1高斯模糊的异常 117 范例5-4-3模糊处理-使用median函数及GUI元件 118 范例5-4-4模糊处理-使用BoxFilter函数及GUI元件 119 范例5-5-1 Threshold-使用临界值函数及GUI元件 122 范例5-5-2 AdaptiveThreshold-使用自适临界值及GUI元件 128 范例5-6-1 Sharpness锐利化处理 130 范例5-6-2锐利化处理,使用GUI元件 131 范例5-7-1 影像合并/融合处理处理,使用GUI元件 131 范例5-8-1 影像缩放-使用Gaussian高斯金字塔及GUI元件 133 范例5-8-2影像缩放-使用resize使用GUI元件 135 范例5-8-3 影像延展效果-使用resize使用GUI元件 136 范例5-8-4影像缩放-使用getRotationMatrix2D及GUI元件 137 范例5-9-1影像旋转以90度*n为主-使用remap及 GUI元件 138 范例5-9-2影像旋转以90度*n为主-使用Flip及 GUI元件 140 范例5-9-3 影像可任意角度旋转缩放使用 GUI元件 141 范例5-10-1 影像扭曲倾斜处理使用GUI元件 143 范例5-11-1 灰阶影像对比强化处理并GUI显示 147 范例5-11-2 影像强化对比效果,使用均衡化直方图 149 范例5-11-3 RGB彩色强化对比效果,使用均衡化直方图及融合 150 范例5-11-4 YUV彩色强化对比效果,使用均衡化直方图及融合 151 范例5-12-1 影像梦幻沙龙处理使用GUI显示 152 范例5-13-1 影像各式颜色空间转换于GUI显示 154 范例5-14-1 影像堆叠 155 范例5-15-1 影像马赛克处理 157 范例5-16-1 影像添加外框 158 范例5-17-1合并两个影像 160 范例5-17-2合并两个影像,使用不规则形状 161 第6章 使用核矩阵进行影像处理 165 范例6-1-1 Mean filter处理 165 范例6-2-1 Prewitt Filter处理 167 范例6-3-1 Laplacian Filter处理1 170 范例6-3-2 Laplacian Filter处理2 171 范例6-3-3 Laplacian Filter灰阶影像处理 173 范例6-3-4 Laplacian Filter使用核矩阵 173 范例6-4-1 Sobel Filter使用核矩阵 175 范例6-4-2 Sobel Filter处理使用内建API 176 范例6-4-3 Sobel Filter处理使用内建API2 178 范例6-5-1 Frei Chenn Filter处理 180 范例6-6-1 Scharr Filter使用核矩阵 180 范例6-6-2 Scharr使用API 181 范例6-7-1 Robinson Filter处理 182 范例6-8-1 Kirsch Filter处理 184 范例6-9-1 Emboss浮雕处理 186 范例6-10-1 创造自己的filter 187 范例6-11-1 SqrBoxFilter处理 188 第7章 绘图 190 范例7-1-1 画线 190 范例7-2-1 画点 191 范例7-3-1 画圆 191 范例7-4-1 画椭圆形 192 范例7-4-2 椭圆内近似多边形练习 194 范例7-5-1 填补凸多边形练习 195 范例7-6-1 多边形绘图(填满)练习 196 范例7-6-2 多边形填充使用滑鼠练习 197 范例7-7-1中空多边形绘图练习 198 范例7-8-1 输入文字练习 200 范例7-8-2 输入文字使用中文练习 202 范例7-8-3浮水印练习 205 范例7-9-1 矩形练习 206 范例7-9-2 判断A矩形是否有在B矩形内 207 范例7-10-1 综合应用:直方图统计练习 208 范例7-11-1 颜色洪水填充处理练习1 211 范例7-11-2 颜色洪水填充处理练习2 213 范例7-11-3 颜色洪水填充处理3-重拾小朋友填色乐趣. 214 范例7-12-1 综合练习:使用一个最小矩形包含一堆点 215 范例7-13-1 综合练习:使用一个最小矩形包含一堆矩形 216 范例7-14-1 综合练习:使用一个矩形撷取影像区块 218 范例7-14-2综合练习:中空多边形绘制使用滑鼠 220 范例7-14-3综合练习:使用多边形撷取不规则影像区块1 222 范例7-14-4 综合练习:使用多边形撷取不规则影像区块2 227 范例7-14-5 综合练习:使用多边形撷取影像贴至另一影像 228 范例7-15-1箭头练习 232 范例7-16-1 特殊符号练习 233 范例7-17-1 立体浮雕制作 235 第8章 进阶影像处理 241 范例8-1-1 Erosion腐蚀处理练习 241 范例8-2-1 Dilation膨胀处理练习 242 范例8-3-1 其他形态学变换处理练习 244 范例8-4-1 Canny边缘检测处理练习1 246 范例8-4-2 Canny边缘检测处理练习2 248 范例8-5-1 卡通化处理1,整合模糊及Canny 249 范例8-5-2 卡通化处理2 252 范例8-5-3 卡通化及线条Live版 253 范例8-6-1 抠出背景处理练习 254 范例8-7-1聚光灯效果处理练习 256 范例8-9-1 分水岭演算法Watershed处理练习 258 范例8-10-1 油画效果处理练习 261 范例8-11-1 多种色调处理练习 262 范例8-12-1 圆形转矩形处理练习 266 范例8-13-1 LogPolar极座标转换处理 267 第9章 强大相片类处理 270 范例9-1-1 影像修复功能处理练习 270 范例9-2-1 影像减色/脱色/降灰阶处理练习 272 范例9-3-1 消除杂点练习1 273 范例9-3-2 消除杂点练习2 274 范例9-3-3 消除杂点练习3 275 范例9-3-4 消除杂点练习4 276 范例9-4-1 HDR高动态范围成像练习 277 范例9-5-1 Seamless Cloning系列 Color Change练习 285 范例9-6-1 Illumination Change练习 287 范例9-7-1 Texture Flattening水彩化 288 范例9-7-2 水彩的世界-Live版 290 范例9-8-1 Seamless Cloning系列-澄清湖水怪无缝贴图 290 范例9-8-2 Seamless Cloning系列-背景练习 295 范例9-8-3 综合练习:使用多边形撷取无缝贴图实作练习 296 范例9-9-1 Non-Photorealistic Rendering非实感绘制-强化 300 范例9-10-1 非实感绘制系列-模糊影像边缘保留处理 301 范例9-11-1 非实感绘制系列-铅笔处理 302 范例9-12-1 非实感绘制系列-写实风格化 304 范例9-12-2 写实风格化Live版 305 范例9-13-1 具限制性对比度自适应直方图均衡CLAHE 306 范例9-14-1 影像形状自动校正 308 范例9-14-2 影像角度自动校正 311 第10章 检测 314 范例10-1-1 Hough Line霍夫线变换1 314 范例10-1-2 Hough Line霍夫线变换2 317 范例10-1-3线段检测 319 范例10-2-1 Hough Circle霍夫圆变换 321 范例10-2-2霍夫圆变换应用:距离量测使用Cam实作 324 范例10-2-3 综合应用-虚拟画笔Live版1 327 范例10-2-4 虚拟画笔Live版2 330 范例10-3-1 寻找轮廓 332 范例10-3-2 轮廓顺序表示法 334 范例10-4-1 寻找轮廓并且绘出外框矩形1 336 范例10-4-2 寻找轮廓并且绘出外框矩形2 338 范例10-4-3 多点绘出外框矩形1 341 范例10-4-4 多点绘出外框矩形2 342 范例10-4-5 多点绘出外框凸多边形 343 范例10-4-6 绘出多点外框圆形 345 范例10-4-7 绘出多点外框椭圆形 346 范例10-4-8 最近似外框多边形 347 范例10-4-9 绘出多点最适外框三角形 349 范例10-5-1寻找轮廓并且绘出外框圆形 351 范例10-5-2寻找轮廓并且绘出外框椭圆形 352 范例10-5-3寻找轮廓并且绘出外框三角形 354 范例10-6-1判断某点是否在凸边形的轮廓内 356 范例10-7-1计算轮廓的面积与周长 357 范例10-8-1使用匹配模板找出某物 359 范例10-8-2使用非匹配模板找出某物 363 范例10-8-3 修正使用匹配与非匹配模板找出某物 364 范例10-9-1 convexHull凸包处理 367 范例10-10-1 convexityDefects凸包缺陷 369 范例10-11-1颜色区域检测 373 范例10-12-1颜色辨识-反向投影1 377 范例10-12-2颜色辨识-反向投影2 379 范例10-12-3颜色辨识-反向投影3 380 范例10-13-1颜色辨识以RGB为主 381 范例10-13-2颜色辨识,使用HSV彩色空间 382 范例10-13-3影像颜色检测 384 范例10-14-1从webcam读取影像及判断HSV颜色值 385 范例10-14-2读取影像及调整HSV颜色值捕捉物体 387 范例10-14-3计算生锈面积 389 范例10-15-1综合应用,辨识蓝色圆形物 390 范例10-15-2综合应用:辨识蓝色圆形物-增加膨胀以改良 393 范例10-16-1找出肤色Live版 395 范例10-16-2找出肤色Live改善版 396 范例10-17-1手势、手指数目辨识 397 范例10-17-2手势控制相机先比5后比Ya(2指)触发自动拍照 406 范例10-18-1 Xray效果及找到手掌心 407 范例10-18-2找到手掌心 Live版 410 范例10-18-3找到掌心与手指 Live版 411 范例10-19-1 空间矩、中心矩、标准中心矩及Hu不变矩 411 范例10-19-2比较两个形状 416 范例10-19-3比较两个影像,使用直方图比对法 419 范例10-19-4找出某物整合MatchTemplete与compareHist 422 范例10-20-1 找出合适的切线 425 范例10-20-2 众点找出合适的切线 428 范例10-21-1束绳检测是否断裂1 430 范例10-21-2束绳检测是否断裂2 432 范例10-21-3束绳检测是否断裂3 433 范例10-22-1束绳检测是否偏斜1 435 范例10-22-2束绳检测是否偏斜2 437 范例10-22-3束绳检测是否偏斜3 439 范例10-23-1 综合应用:找出趋势图最高点 441 范例10-24-1寻找两个矩形的交叉点 442 范例10-25-1 捕抓萤幕画面 444 范例10-25-2找出应用程式在萤幕的位置-我的Word在那里 446 第11章 特征点检测 450 范例11-1-1 Shi-Tomasi角点检测方法 450 范例11-1-2利用角点检测找出particle-Live版 452 范例11-2-1 Harris-Stephens边缘检测方法 453 范例11-3-1更精确的角点检测 454 范例11-4-1特征点检测计算 457 范例11-5-1利用Features2D二维特征点寻找物体 462 范例11-5-2利用二维特征点SURF+FLANN寻找物体-Live版 468 范例11-5-3利用Features2D寻找近似物体 468 范例11-6-1利用二维特征点及Homography单映射寻找物体 472 范例11-6-2利用二维特征点及单映射寻找物体Live版 476 范例11-6-3利用二维特征点及单映射寻找近似物体 476 范例11-7-1客制化角点检测视窗 477 范例11-8-1寻找出棋盘格 480 范例11-8-2寻找出棋盘格Live版 483 范例11-9-1矫正镜头畸形 483 范例11-9-1利用矫正镜头制造艺术化扭曲影像 487 第12章 运动追踪motion tracking 489 范例12-1-1补捉动静Live版 489 范例12-2-1使用HOG特征进行行人检测 491 范例12-2-2行人检测Live版 494 范例12-3-1 Lucas-Kanade光流 494 范例12-3-2 Farneback光流 499 范例12-4-1使用MOG特征进行行人检测 502 范例12-4-2 MOG特征进行行人检测Live版 504 范例12-4-3使用KNN特征进行行人检测 505 范例12-4-4 KNN特征进行行人检测Live版 506 范例12-5-1使用Meanshift均值偏移寻找物体Live版 507 范例12-6-1使用CamShift人脸追踪Live版 509 范例12-7-1 Kalman Filter滤波,随机乱跑Live版 512 范例12-7-2 Kalman Filter滤波,追踪蓝色圆形Live版 516 范例12-8-1更新运动历史图像Live版 517 第13章 Machine Learning机器学习 523 范例13-1-1人脸辨识 524 范例13-1-2人脸辨识Live版 527 范例13-1-3人脸辨识含眼鼻Live版 527 范例13-1-4人脸眼鼻快速辨识Live版 529 范例13-1-5 整合应用:检测到眼睛自动添加眼镜Live版 531 范例13-1-6检测到眼睛自动添加半透明眼镜Live版 534 范例13-1-7检测行人 535 范例13-1-8检测车辆 537 范例13-1-9 DetectMultiScale3参数测试 538 范例13-1-10计算车流量 540 范例13-1-11 侦测RJ45网路头Live版 542 范例13-2-1 电脑小手写板程式Live版 549 范例13-2-1a手写数字的资料库 552 范例13-2-1b鸢尾花资料库 555 范例13-3-1常态贝叶斯分类器预测鸢尾花数据集 560 范例13-3-2常态贝叶斯分类器-预测手写数字 561 范例13-3-3常态贝叶斯分类器-预测手写数字Live版 563 范例13-4-1决策树Decision Trees预测鸢尾花数据集 565 范例13-4-2决策树-预测手写数字 569 范例13-4-3决策树-预测手写数字Live版 571 范例13-5-1最大期望值EM-预测鸢尾花数据集 572 范例13-5-2最大期望值-预测鸢尾花数据集二元分类 576 范例13-5-3最大期望值-预测鸢尾花数据集3类修改版 578 范例13-5-4最大期望值-预测手写数字 581 范例13-5-5最大期望值-预测手写数字(二元分类) 583 范例13-5-6最大期望值-预测手写数字Live版 586 范例13-6-1 Logistic回归-预测鸢尾花数据集 586 范例13-6-2 Logistic回归-预测手写数字 590 范例13-6-3 Logistic回归-预测手写数字,调整参数 593 范例13-6-4 Logistic回归-预测手写数字Live版 593 范例13-7-1 KNN-预测鸢尾花数据集 594 范例13-7-2 KNN-预测鸢尾花数据集2 597 范例13-7-3 KNN-预测手写数字 600 范例13-7-3 KNN-预测手写数字Live版 602 范例13-7-5 KNN-分类练习 602 范例13-8-1 随机森林-预测鸢尾花数据集 604 范例13-8-2随机森林-预测手写数字 607 范例13-8-3 随机森林-预测手写数字Live版 609 范例13-9-1 Boost分类-预测鸢尾花数据集 609 范例13-9-2 Boost分类-预测鸢尾花数据集2 612 范例13-9-3 Boost-预测手写数字 615 范例13-9-4 Boost-预测手写数字Live版 617 范例13-10-1 类神经网路-初声试啼小练习 618 范例13-10-2 类神经网路-预测鸢尾花数据集 623 范例13-10-3类神经网路-预测手写数字 625 范例13-10-4类神经网路-预测手写数字Live版 627 范例13-11-1 SVM-预测鸢尾花数据集 627 范例13-11-2 SVM预测手写数字 631 范例13-11-3 SVM预测手写数字Live版 633 范例13-11-4 SVM分类练习于2D平面 633 范例13-12-1 Kmean(K均值)简单分类 636 范例13-12-2 Kmean 1维数据分类 640 范例13-12-3 Kmean 2维数据分类 643 范例13-12-4 Kmean 应用于影像处理-减色处理 646 范例13-12-5 Kmean预测分类-鸢尾花数据集 648 范例13-12-6 Kmean预测分类-手写数字数据集 650 范例13-12-7 Kmean预测分类-手写数字Live版 652 范例13-13-1马氏距离 654 范例13-13-2马氏距离使用于-鸢尾花数据集 656 范例13-13-3马氏距离使用于-手写数字数据集 657 范例13-13-4修改马氏距离使用于-手写数字数据集 660 范例13-13-5修改马氏距离使用于-鸢尾花数据集 665 范例13-13-6修改版马氏距离使用于-预测手写数字Live版 666 范例13-14-1主成份分析PCA 671 范例13-14-2鸢尾花数据集使用PCA降维 673 范例13-14-3鸢尾花数据使用PCA降维整合Kmean聚类处理 675 范例13-14-4鸢尾花数据使用PCA降维整合Knn分类处理 678 范例13-14-5手写数字集使用PCA降维整合Kmean聚类处理 680 范例13-14-6 手写数字集使用PCA降维整合KNN及SVM分类 682 范例13-14-7 改善手写数字集使用PCA降维整合KNN及SVM 685 范例13-14-8 改善鸢尾花数据使用PCA降维整合KNN分类 689 范例13-14-9个人人脸辨识整合PCA与SVM计算 690 范例13-14-10个人人脸辨识整合PCA与LibSVM计算 694 范例13-15-0车牌辨识 699 范例13-15-1 Java呼叫外部命令Tesseract字符识别引擎 701 第14章 其它功能与整合效果 703 范例14-1-1离散傅立叶转换 703 范例14-2-1视差(视角不对称)使用BM 706 范例14-2-2视差(视角不对称)使用SGBM 708 范例14-3-1综合应用:虚拟钢琴Live版 710 范例14-4-1平面细分割使用Subdiv2D 711 范例14-4-2综合练习,平面细分割使用Subdiv2D应用于人脸 715 范例14-4-2综合练习,平面细分割应用人脸Live版 718 第15章 发行Java应用程式 721 第16章 Opencv与Web整合 723 范例16-1-1 Hello Opencv 723 范例16-1-2 利用opencv显示影像 726 范例16-1-3在Web上模糊处理 729 范例16-1-4 jsp应用模糊处理 730 附录A Opencv Mat资料结构列表 734 附录B Opencv色彩空间转换资料格式列表 736 附录C Iris鸢尾花数据集 743 附录D Opencv Java开发异常说明 748 附录E Opencv for Java 2.4.12与3.1差异 749 附录F Opencv相关网址 754

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我菜就爱学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值