题目
4.寻找两个正序数组的中位数
给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。
请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
通过次数221,206提交次数576,972
第一次解法(没有考虑时间复杂度要求)
利用两个数组合并然后排序找中位数,时间复杂度是O(m+n)
第二次解法(参考了官方题解)
因为要求时间复杂度是O(log(m+n)),则需要使用二分法,但是这是两个数组,运用二分法带来了困难。想要快速理解建议带着代码一块看。
第一个要思考的问题:如何使用二分法
第二个问题:当k/2-1越界的情况我们又是如何处理
第三个问题:两种情况里边索引的更新规则,排除的元素个数,以及新的k是如何计算
- 如果是第一种情况,没有越界,排除的元素个数是
k/2个
,k更新规则k=k-k/2; - 如果是第二种情况,发生了越界,则我们让索引直接指向其最后一个元素,如果该元素也被排除,则排除的元素为当前索引到上一次的索引值处的元素,即newi-i+1个元素被排除。k=k-(newi-i+1)
通过分析我们知道:
- 两个索引下标i,j,其一直往右移动,移动规则满足:
当i或者j,+k/2越界,则更新为数组最后一个元素
,没有越界就是正常的移动,+k/2-1得到新的索引 - 排除的元素个数不同,但是都等于通新索引减去旧索引的值+1
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {//转化为第k小的数
int len=nums1.length+nums2.length;
if(len%2==0)//偶数,则寻找第len/2个数和第len/2+1个数,如1,2,3,4;——4/2=2,寻找第2小和第3小的数
return (getElenment(nums1,nums2,len/2)+getElenment(nums1,nums2,len/2+1))*1.0/2;
else//奇数则是第len/2+1个数,如1,2,3;——3/2=1,1+1=2,寻找第2小的数
return getElenment(nums1,nums2,len/2+1);
}
//查找第k小的数
private static int getElenment(int[] nums1,int[] nums2,int k){//k肯定是大于0的
int len1=nums1.length,len2=nums2.length;
int i=0,j=0;//用于排除元素,A[0]~A[i-1]都排除,B[0]`B[j-1]都排除
while(true){//当nums1,nums2都不空时
if(i==len1)//因为k是第k,对标索引需要减1
return nums2[j+k-1];//有一个数组已经排除完了
if(j==len2)
return nums1[i+k-1];//有一个数组已经排除完了
if(k==1)//
return nums1[i]>nums2[j]?nums2[j]:nums1[i];
int half = k/2;
//判断是否i+k/2会越界,越界则直接比较数组最后的元素,注意如何更新索引和排除的元素个数的计算
int newi = Math.min(i+half,len1)-1;
int newj = Math.min(j+half,len2)-1;
if(nums1[newi]<=nums2[newj]){
k-=newi-i+1;//排除的元素个数
i=newi+1;
}else {
k-=newj-j+1;
j=newj+1;
}
}
}
}