动态规划算法题

题目描述(力扣198

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。

题解思路

这道题要找的是, 如果选择当前这个数, 那么他的尽可能大的值是多少, 因为相邻两个不能偷, 所以当前最大值有两种情况, 比如a和b相邻, 偷a则不偷b, 当到a, b时, 他们目前的值都是到当前为止的最大值, 就一个数据来分析[2, 7, 9, 3, 1], 数据数组nums, 存放当前最大值的数组arr。
我的思路是从第四个数开始, 前面三个数, arr的值显而易见, 2, 7, 11(11 = 2 + 9), 而到第四个数, 他不能取相邻的9, 所以只能取arr[0]或者arr[1], 易知, 取arr[1] (7)可得当前最大, 所以arr[3]为(7 + 3 = 10), 现在目前最大值一定在arr[2], arr[3]中, 以此类推, 最后的最大值在数组的倒数两个元素中。

代码

int rob(int* nums, int numsSize){
    int dp[numsSize + 1], i;
    if (numsSize == 0) {
        return 0;
    }
    if (numsSize == 1) {
        return nums[0];
    }
    if (numsSize == 2) {
        return nums[0] > nums[1]?nums[0]:nums[1];
    }
    if (numsSize == 3) {
        return nums[0] + nums[2] > nums[1]?nums[0] + nums[2]:nums[1]; 
    }
    dp[0] = nums[0];
    dp[1] = nums[1];
    dp[2] = nums[2] + nums[0];
    for (i = 3; i < numsSize; i++) {
        dp[i] = nums[i] + (dp[i - 3] > dp[i - 2]?dp[i - 3]:dp[i - 2]);
    }
    for (i = 0; i < numsSize; i++) {
        printf("%d ", dp[i]);
    }
    return dp[numsSize - 1] > dp[numsSize - 2] ? dp[numsSize - 1] : dp[numsSize - 2];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值