算法题——动态规划

本文梳理了动态规划在算法面试中常考的7个问题,包括最小路径和、编辑距离、最长回文子序列、字符串删除操作、最长公共子序列、回文串最少插入次数和最小乘车费用。通过实例和代码演示,助你准备笔试和面试中的动态规划部分
摘要由CSDN通过智能技术生成


前言:最近准备笔试和面试的时候,发现了一个爱考的知识点——动态规划,特此整理。

1 最小路径和

力扣64题
题解
题目:给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
在这里插入图片描述
code

def minPathSum(self, grid):
    """
    :type grid: List[List[int]]
    :rtype: int
    """
    if not grid or not grid[0]:
        return 0

    row, col = len(grid), len(grid[0])
    dp = [[0] * col for _  in range(row)]
    dp[0][0] = grid[0][0]
    for i in range(1, row):
        dp[i][0] = dp[i - 1][0] + grid[i][0]
    for j in range(1, col):
        dp[0][j] = dp[0][j - 1] + grid[0][j]
    for i in range(1, row):
        for j in range(1, col):
            dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
    return dp[row - 1][col -1]

2 编辑距离

力扣72题
题解

题目:给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:插入一个字符;删除一个字符;替换一个字符
在这里插入图片描述
code

def minDistance(self, word1, word2):
        n = len(word1)
        m = len(word2)
        
        # 有一个字符串为空串
        if n * m == 0:
            return n + m
        
        # DP 数组
        D = [ [0] * (m + 1) for _ in range(n + 1)]
        
        # 边界状态初始化
        for i in range(n + 1):
            D[i][0] = i
        for j in range(m + 1):
            D[0][j] = j
        
        # 计算所有 DP 值
        for i in range(1, n + 1):
            for j in range(1, m + 1):
                left = D[i - 1][j] + 1
                down = D[i][j - 1] + 1
                left_down = D[i - 1][j - 1] 
                if word1[i - 1] != word2[j - 1]:
                    left_down += 1
                D[i][j] = min(left, down, left_down)
        
        return D[n][m]

3 最长回文子序列

力扣516题
题解
题目:给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
在这里插入图片描述
code

def longestPalindromeSubseq(self, s):
        n = len(s)
        dp = [[0] * n for _ in range(n)]
        for i in range(n - 1, -1, -1):
            dp[i][i] = 1
            for j in range(i + 1, n):
                if s[i] == s[j]:
                    dp[i][j] = dp[i + 1][j - 1] + 2
                else:
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
        return dp[0][n - 1]

4 两个字符串的删除操作

力扣583题
题解
题目:给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。
示例说明
code:

def minDistance(self, word1, word2):
        """
        :type word1: str
        :type word2: str
        :rtype: int
        """
        m, n = len(word1), len(word2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        max_sub = dp[m][n]
        return m - max_sub + n - max_sub

5 最长公共子序列

力扣1143题
题解
题目:给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。如果不存在 公共子序列,返回 0 。

code

 def longestCommonSubsequence(self, text1, text2):
        """
        :type text1: str
        :type text2: str
        :rtype: int
        """
        m, n = len(text1), len(text2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m+1):
            for j in range(1, n+1):
                if text1[i-1] == text2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        return dp[m][n]

6 让字符串成为回文串的最少插入次数

力扣1312题
题解
题目:给你一个字符串 s ,每一次操作你都可以在字符串的任意位置插入任意字符。
请你返回让 s 成为回文串的最少操作次数 。
在这里插入图片描述
code

def minInsertions(self, s):
        n = len(s)
        t = s[::-1]
        dp = [[0] * (n + 1) for _ in range(n + 1)]
        for i in range(1, n + 1):
            for j in range(1, n + 1):
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
                if s[i - 1] == t[j - 1]:
                    dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1)
        return n - dp[n][n]

7 最小乘车费用

题目:某条街上每一公里就有一汽车站,乘车费用如下表:

公里数费用
112
221
331
440
549
658
769
879
990
10101

而一辆汽车从不行驶超过10公里。某人想行驶n公里,假设他可以任意次换车,请你帮他找到一种乘车方案使费用最小(10公里的费用比1公里小的情况是允许的)。

输入:输入文件共两行,第一行为10个不超过100的整数,依次表示行驶1~10公里的费用,相邻两数间用空格隔开;第二行为某人想要行驶的公里数。
输出:输出文件仅一行包含一个整数,表示该测试点的最小费用。

样例输入:
12 21 31 40 49 58 69 79 90 101
15
样例输出:147

code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[21],dp[111];
int n;
int main()
{
    memset(dp,127,sizeof(dp));
    for(int i=1;i<=10;i++)
        scanf("%d",&f[i]);
    scanf("%d",&n);
    dp[0]=0;
    dp[1]=f[1];
    for (int i=2;i<=n;i++)
    {
        dp[i]=dp[i-1]+f[1];
        for (int j=2;j<=10 && j<=i;j++)
        dp[i]=min(dp[i],dp[i-j]+f[j]);
    }
    printf("%d",dp[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值