DeepSeek V3被吹三天了,今天试了一下自称是“ChatGPT” model ?

📅 12月26日,杭州深度求索人工智能基础技术研究有限公司(简称“深度求索”)正式发布了全新系列模型 DeepSeek-V3。官方表示,该模型多项评测成绩超过了诸如 Qwen2.5-72BLlama-3.1-405B 等顶尖开源模型,在性能上更是与闭源模型 GPT-4oClaude-3.5-Sonnet 平分秋色。

DeepSeek V3被吹三天了,今天试了一下自称是“ChatGPT”?


作者简介


作者名片 ✍️

  • 博主猫头虎
  • 全网搜索关键词猫头虎
  • 作者微信号Libin9iOak
  • 作者公众号猫头虎技术团队
  • 更新日期2024年12月29日
  • 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能!

文末加入我们AI共创交流团队 🌐

正文


🌟 DeepSeek-V3:性能真的强吗?

1️⃣ 官方亮点宣称

根据官方技术论文,DeepSeek-V3的训练成本为 557.6万美元,远低于 GPT-4o 等闭源模型的 1亿美元,但依旧实现了与其性能相当的效果:

  • 多项评测超越对手:DeepSeek-V3 在多个基准测试中表现优异,压制了诸如 Qwen 和 Llama 等顶尖开源模型。
  • 开源+低成本:相较于闭源模型,其成本和开源特性让开发者们更容易接触并使用。

DeepSeek V3被吹三天了,今天试了一下自称是“ChatGPT”?

2️⃣ 真实体验:它真的行吗?

笔者在第一时间体验了这个备受瞩目的模型,以下是几点感受:

  • 语言生成能力:DeepSeek-V3 在复杂对话和技术性问题上的回答颇具深度,但偶尔会出现小瑕疵。
  • 理解上下文的能力:长文本追踪和上下文理解较强,能够应对跨段对话。
  • 趣味性意外Bug:当被问到“你是哪家大模型?”时,模型直接回答 “ChatGPT”,让人啼笑皆非。这个Bug至今尚未修复。
    测试时间:12月29日22:29

📝 吐槽:一个自诩“打破大模型格局”的顶尖开源模型,却犯了这种“认亲”级错误,似乎和它的“顶尖”称号有些不匹配。

DeepSeek V3被吹三天了,今天试了一下自称是“ChatGPT”?


🤔 DeepSeek-V3真的能与GPT-4o比肩?

让我们通过几个数据来直观了解:

模型训练成本(美元)开源/闭源评测成绩关键优势
GPT-4o1亿闭源世界顶尖,行业标杆超高准确性和稳定性
Claude-3.5-Sonnet未公开闭源通用能力强人性化对话能力
Qwen2.5-72B未公开开源出色的语言理解和生成国内领先模型
DeepSeek-V3557.6万开源超越Qwen等,接近GPT-4o成本低、可定制化

DeepSeek V3被吹三天了,今天试了一下自称是“ChatGPT”?

📌 总结
DeepSeek-V3 在模型训练成本上的确具备优势,尤其是开源特性加持,使其更容易被开发者社区接受。但在实际体验中,性能虽优异,却尚存小问题,比如回答内容的准确性和偶尔出现的Bug。


🔍 深度求索的野心:开源大模型的未来?

DeepSeek-V3的发布,是否能打破国内外大模型格局?
目前来看,其性能确实有竞争力,但和 GPT-4o 等闭源模型的稳定性相比,还存在一定差距。不过,考虑到:

  • 训练成本的压缩
  • 开源生态的可塑性

它的潜力不容小觑。


🛠️ 猫头虎的一点建议

对于想要尝试 DeepSeek-V3 的开发者们,不妨关注以下几点:

  1. 应用场景:适用于语言生成、问答和对话系统。
  2. 开发社区:加入官方提供的开源社区,获取支持和反馈。
  3. 期待更新:尤其是希望官方尽快修复“自称ChatGPT”的小Bug,避免拉低体验感。

🤖 DeepSeek-V3,真能扛起开源模型的大旗?还是需要更多时间打磨?欢迎在评论区分享你的看法!👇

粉丝福利


👉 更多信息:有任何疑问或者需要进一步探讨的内容,欢迎点击文末名片获取更多信息。我是猫头虎,期待与您的交流! 🦉💬

https://zhaimengpt1.kimi.asia/list

💳


联系我与版权声明 📩

  • 联系方式
    • 微信: Libin9iOak
    • 公众号: 猫头虎技术团队
  • 版权声明
    本文为原创文章,版权归作者所有。未经许可,禁止转载。更多内容请访问猫头虎的博客首页

点击✨⬇️下方名片⬇️✨,加入猫头虎AI共创社群,交流AI新时代变现的无限可能。一起探索科技的未来,共同成长。🚀

### 特定AIDeepSeekChatGPT的功能差异 #### 技术背景与参数量 特定AI系统的参数量和技术背景会因具体的实现方式不同而有所变化。对于DeepSeek而言,部分报道指出其拥有370亿激活参数版本(即DeepSeek-v3),甚至存在以671b作为整体参考的情况[^2]。相比之下,基于GPT-3.5-turbo构建的ChatGPT模型参数规模约为7b。 #### 推理能力和应用场景 - **DeepSeek** - 主要由中国的深度求索公司开发,特别强调在垂直领域内的专业知识和服务能力,比如金融、法律以及编程等领域。 - 提供高效实用的服务体验,并且某些版本如DeepSeek-R1或DeepSeek-Coder已经实现了开源共享,便于企业和开发者进行二次开发和定制化部署。 - **ChatGPT** - 更加侧重于通用对话理解和生成任务,在自然语言处理方面表现出色,能够广泛应用于客户服务聊天机器人等多种场景之中。 - 虽然也具备一定的跨行业适应性,但在专门领域的深入程度可能不及像DeepSeek这样针对特定行业的优化方案。 #### 性能表现及成本考量 就训练成本来说,DeepSeek展示了明显的经济优势——v3版本仅需花费大约557.6万美元即可完成整个过程;这远少于OpenAI旗下产品线中的高端型号GPT-4所消耗的大约1亿美元预算。即使考虑到中间层次的产品GPT-3.5-turbo的具体开销尚未公开披露,也可以合理推断它仍然保持在一个相对较高的水平线上。因此,较低廉的研发投入使得DeepSeek成为那些希望降低初期投资风险并快速获取高质量解决方案的企业用户的理想之选。 ```python def compare_ai_models(model_a, model_b): """ Compare two AI models based on parameters and cost. Args: model_a (dict): Information about the first model including 'name', 'parameters' and 'cost'. model_b (dict): Information about the second model similar to `model_a`. Returns: str: A comparison summary of both models. """ result = f"{model_a['name']} has {model_a['parameters']} billion parameters with a training cost around ${model_a['cost']}. " result += f"While {model_b['name']} features approximately {model_b['parameters']} billion parameters at an estimated price tag over ${model_b['cost']}." return result print(compare_ai_models( {"name": "DeepSeek", "parameters": 370, "cost": "557.6 million"}, {"name": "ChatGPT(GPT-3.5-turbo)", "parameters": 7, "cost": "? but higher than DeepSeek"} )) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头虎

一分也是爱,打赏博主成就未来!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值