华为最新发布的三进制技术深度解析:是什么、有何用途及深远意义?

华为三进制技术深度解析:是什么、有何用途及深远意义?

I. 摘要

华为近期公开的三进制计算技术专利,标志着其在半导体和人工智能领域的一项重要探索。该技术的核心在于从传统的二进制逻辑(0和1)转向三进制逻辑(如-1, 0, 1),旨在通过更高效的信息表示和处理方式,解决当前计算技术面临的若干瓶颈。据称,三进制技术有望显著减少芯片上的晶体管数量,从而降低功耗、缩小芯片面积,并提升特定计算任务(尤其是AI相关计算)的效率。华为将此技术主要瞄准AI芯片、边缘计算和物联网等领域,视其为构建自主技术生态和应对外部压力的关键举措。然而,尽管前景广阔,三进制计算的商业化之路依然面临诸多挑战,包括硬件制造的复杂性、现有二进制生态系统的兼容性以及行业标准的建立等。本报告将深入剖析华为三进制技术的内涵、潜在优势、目标应用、面临的挑战及其对华为乃至整个半导体产业的战略意义。

注意⚠️:文中所有乱码数字为引用文末资料数据,平台不支持对应格式,源文件可参考置顶文件~

II. 揭开华为三进制愿景的面纱:“是什么”与“为什么”

华为最新发布的三进制技术深度解析:是什么、有何用途及深远意义?

A. 解码专利CN119652311A:华为的三进制主张

华为在三进制计算领域的探索,通过其专利CN119652311A得以正式展现。该专利据报道于2023年9月申请,并于2025年3月公开或获得批准 1。这份专利详细描述了一种“三进制逻辑门电路” 2 或基于三进制逻辑的芯片技术 1。

其核心主张是从二进制系统依赖的两位(0和1)逻辑,转向一种三态逻辑。尽管一些通用的三进制讨论提及状态{0, 1, 2} 1,华为的专利似乎更侧重于一种平衡三进制系统,采用如{-1, 0, 1}这样的数学表示 3。这一选择对于信息处理方式以及可能获得的效率类型至关重要。该专利的目标是将这一理论概念转化为一种“可量产的芯片技术” 1,表明其雄心不止于纯粹的研究。

值得注意的是,该专利申请和公开的时间点非常关键,这强烈暗示,华为追求三进制计算不仅仅是一项常规的技术探索,更是在技术自立需求和在西方技术主导较少的领域寻求创新的愿望驱动下的战略举措。三进制计算作为一个相对不成熟且商业主导程度较低的领域,为华为提供了一个潜在的“蓝海”,使其可能在该领域建立领先地位。开发像三进制逻辑这样的基础芯片技术,也符合中国减少技术依赖和促进本土创新的更广泛目标 4。

表2: 华为三进制专利 (CN119652311A) 概览

特性详情
专利号CN119652311A
申请人华为技术有限公司 (推测)
申请日期2023年9月 1
公开/批准日期2025年3月 1
核心技术三进制逻辑门电路 / 三进制计算系统 1
提议逻辑状态-1, 0, 1 (平衡三进制) 3
主要宣称优势减少晶体管数量、降低能耗、增强AI处理能力 1
主要目标应用AI芯片、边缘计算、物联网 1

B. 从二进制的转变:引入三态逻辑

传统计算依赖二进制逻辑,将信息表示为0和1的序列,对应于晶体管中两种不同的物理状态(例如,关/开,低/高电压)1。华为的提案以及广义上的三进制计算,引入了第三种逻辑状态。这意味着每个基本信息单元(一个“trit”而非“bit”)可以表示三个值之一 9。如前所述,华为似乎倾向于使用如-1, 0和+1这样的值的“平衡三进制”系统 3。这类似于一个灯的开关不仅有“开”和“关”,还有一个“暗”或“中间”设置 1。

这种根本性的改变使得每个数字可以编码更多信息。虽然一个二进制位存储 log2​(2)=1 比特的信息,但一个三进制位存储 log2​(3)≈1.58 比特的信息 7。因此,n 个三进制位可以表示 3n 个状态,而 n 个二进制位只能表示 2n 个状态。

华为采用平衡三进制系统(-1, 0, 1)是一项深思熟虑的技术选择,它为某些计算任务,特别是那些在人工智能中普遍存在的任务(如处理有符号数和复杂算术),提供了固有的数学优雅性和效率。平衡三进制系统能够自然地表示正、负和零值,而无需像标准二进制表示那样需要一个单独的符号位 7。加法和乘法等算术运算在平衡三进制中可以更有效或更容易实现 9;例如,乘法有时可以避免进位操作 11。人工智能算法,特别是在深度学习中,涉及大量的矩阵计算、梯度计算以及其他运算,在这些运算中,高效处理有符号数和对称值范围是有益的。平衡三进制中的“中间状态”(-1, 0, 1中的0)也可以自然地映射到神经网络模型中的“未知”、“中性”或“抑制性”信号等概念 1。

C. 简史:三进制计算的过去与华为的复兴

三进制计算的概念并非新生事物。第一台电子三进制计算机“Setun”由尼古拉·布鲁森佐夫 (Nikolay Brusentsov) 于1958年在苏联莫斯科国立大学开发 1。据报道,与同期的二进制机器相比,它具有成本更低、功耗更低等优势 9。

尽管有这些早期的探索和理论上的优势,二进制计算迅速成为主导范式。这主要是因为用电子元件(作为开关的晶体管)实现两态逻辑的简单性,以及二进制元件大规模制造生态系统和规模经济的迅速发展 5。在那个时代的技术条件下,三进制系统在可靠且经济高效的硬件实现方面面临挑战。

华为当前的举措代表了对三进制计算兴趣的复苏,其驱动力源于新的需求:现代人工智能巨大的计算需求和功耗,以及对技术差异化的战略需求 1。

华为决定重新审视三进制计算,与其说是重新发现一项失落的技术,不如说是一项经过深思熟虑的赌注,即现代半导体制造能力和先进材料科学最终能够克服三进制逻辑历史上的实现障碍,尤其是在潜在回报(例如,在人工智能效率方面)如今变得更大、更具战略关键性的背景下。20世纪50、60年代的技术限制使得与简单的二进制开关相比,可靠的三态器件难以大规模且经济地生产 5。现代半导体制造业极其先进,能够在纳米尺度上精确控制材料和结构,这可能使得稳定三进制元件的制造更具可行性。三进制计算所解决的“问题”(例如,计算密度、功率效率)随着人工智能的兴起而变得更加尖锐,从而对此类创新产生了更强的“拉动”作用 5。面临特定市场和地缘政治压力的华为 3,更有动力投资于可能带来范式转变的高风险、高回报基础技术,而不是在既有二进制框架内进行增量改进。

III. 三进制逻辑的机制:它是如何工作的

A. 根本差异:从比特到Trit

二进制信息的基本单位是“比特”(bit),能够表示两种状态(0或1)。在三进制计算中,基本单位是“trit”(三进制数字),能够表示三种不同的状态(例如,-1, 0, +1 或 0, 1, 2)9。

这个看似微小的改变对信息密度产生了重大影响。如前所述,一个trit携带的信息大约是一个比特的1.58倍 (log2​3)。这意味着,要表示相同范围的数值,三进制系统通常比二进制系统需要更少的数字。例如,5个trit可以表示 35=243 个值,而需要8个比特才能表示 28=256 个值 10。这暗示了数据表示和处理可能更紧凑。

表1: 核心差异:二进制与三进制计算

特性二进制 (Binary)三进制 (Ternary)
基数23
每位数字的状态数23
数字表示示例0, 1非平衡: 0, 1, 2 1 <br> 平衡: -1, 0, 1 4
每位数字的信息量1 比特≈1.58 比特 7
n 位数字可表示状态数2n3n

B. 探索三进制系统:平衡与非平衡方法

  • 非平衡三进制 (Unbalanced Ternary): 使用数字{0, 1, 2} 1。这是基数为3的直接扩展。虽然直接,但表示负数通常需要额外的符号约定,类似于有符号二进制数。
  • 平衡三进制 (Balanced Ternary): 使用数字{-1, 0, +1},通常表示为{N, Z, P}或{-, 0, +} 3。该系统具有几个内在优势:
    • 符号的自然表示: 负数是数字集的固有部分,无需单独的符号位。一个数的负数通常可以通过简单地反转其trit的符号(例如,交换-1和+1)来获得 7。
    • 对称性与算术效率: 围绕零的对称性简化了某些算术运算。例如,乘法有时可以用更少或更简单的进位操作来执行,而减法可以变成带有反转操作数的加法形式 9。
    • 舍入效率: 与二进制相比,平衡三进制中的截断可能导致向零舍入的误差累积更少 7。

华为的专利似乎利用了平衡三进制系统 3,这有力地表明了他们对算术效率和AI相关计算适用性的关注。

C. 概念构建模块:三进制逻辑门和电路

正如二进制计算依赖于逻辑门(与门、或门、非门、与非门、或非门、异或门)一样,三进制计算也需要其自身的一套基本逻辑门,这些逻辑门对trit进行操作 1。例如三进制反相器(可能循环通过状态,例如-1 -> 0 -> +1 -> -1,或其他排列)、三进制最小门(类似于与门)和三进制最大门(类似于或门)7。

华为的专利CN119652311A专门针对“三进制逻辑门电路” 2,旨在通过优化的电路设计实现对三进制逻辑值的“+1和-1”操作 1。

物理实现:

  • 硅基 (CMOS): 这很可能是华为初期可量产芯片所采用的方法,利用现有的半导体制造基础设施。CMOS中的三进制逻辑门将需要修改晶体管配置,以可靠地区分和切换三种电压水平(例如,-V, 0, +V 对应 -1, 0, +1)7。与简单的二进制CMOS门相比,每个三进制门可能需要更复杂的晶体管排列。一些研究讨论了用于平衡三进制逻辑的忆阻器-CMOS混合设计 12。
  • 碳纳米管 (CNTs): 研究人员,特别是北京大学的研究人员,正在探索将碳纳米管用于三进制逻辑。碳纳米管具有优异的电学特性,并且正在开发新型晶体管设计,如源控晶体管 (SGTs),以产生三种不同的电流状态 18。这是一种有前景但不太成熟的材料科学方法。
  • 光学计算: 三进制系统已被提议用于光学计算机,利用光的特性,如偏振态(例如,暗态表示0,两种正交偏振态表示+1和-1)9。
  • 其他材料/器件: 研究还包括忆阻器 12 和约瑟夫森结 9 用于三进制实现。

华为专注于一项可能采用改良硅CMOS技术实现的三进制逻辑门电路专利 2,这体现了一种务实的策略。其目标是将三进制逻辑整合到现有高度成熟的硅制造生态系统中,而不是同时应对新逻辑系统和不成熟的新材料科学(如碳纳米管或光学方法)带来的双重挑战。这种策略可能为商业化提供一条更快(尽管仍具挑战性)的路径。全球半导体产业绝大多数基于硅CMOS技术,拥有庞大的既有基础设施和专业知识 5。引入新的逻辑系统(三进制)本身已是一项艰巨的任务;若将其建立在全新的材料平台(例如碳纳米管 20 或光学元件 9)之上,则会使研究、开发和制造方面的挑战成倍增加。华为专利描述中强调可量产性并降低代工厂的采用成本 1,强烈暗示其将利用或改造现有的硅制造工艺。正如1所述:“华为的差异化在于硬件层直接支持三态逻辑,避免软件模拟开销,降低晶圆厂重新采用三进制芯片的沉没成本。”这种务实的方法与更偏向研究的探索(如基于碳纳米管的三进制芯片 20)形成对比,后者虽然可能提供更大的长期效益,但在近期面临更显著的制造可扩展性障碍 20。

IV. 三的承诺:三进制计算的关键优势

A. 效率提升:更少的晶体管,更小的芯片封装

与二进制逻辑相比,三进制逻辑理论上可以用更少的晶体管执行等效计算。据估计,晶体管数量可能减少约30% 1。对于给定的功能,更少的晶体管直接转化为更小的芯片裸片尺寸 1。这反过来又可能导致每个芯片的制造成本降低,因为单个晶圆可以生产更多的芯片 1。

晶体管数量的减少不仅仅是一项成本节约措施;它是应对摩尔定律放缓以及二进制系统中物理晶体管缩放日益困难的潜在途径。三进制逻辑提供了一种提高逻辑密度(每单位面积的计算量)的方法,即使物理密度(每单位面积的晶体管数量)的改进变得更加难以实现。摩尔定律预测芯片上的晶体管数量会翻倍,但随着晶体管接近原子尺度,该定律正面临物理极限 3。在二进制领域进一步小型化正变得越来越复杂和昂贵。通过每个数字(trit vs. bit)编码更多信息,三进制逻辑允许单个晶体管(或形成三进制门的小组)有效地比其二进制对应物做更多“工作” 7。这意味着即使三进制晶体管的物理尺寸没有比二进制晶体管显著缩小,整个芯片在其尺寸下也可以更强大,或者用更少的组件实现相同的功率。这是一种逻辑上的“维度缩放”,而不仅仅是物理缩放。这可以通过寻找从硅基技术中提取更多计算能力的新方法来延长其寿命 5。

B. 功耗优化:迈向更节能的计算

一个主要的宣称优势是显著降低能耗。据预测,对于相同的计算任务,三进制芯片的能耗可能仅为二进制芯片的33%左右 1,或者能耗降低高达60-70% 7。华为特别强调了这一点在AI芯片上的应用 2。这一优势对于耗电量大的应用尤为关键,例如AI模型训练和推理、大规模数据中心以及电池受限的设备,如物联网传感器和边缘计算机 1。

三进制计算所承诺的深远节能效果可能成为人工智能产业的一股颠覆性力量,它有可能通过使强大的AI在更广泛的、功率能力较低的硬件上运行成为可能,并显著降低AI数据中心的运营碳足迹,从而普及AI技术。当前AI模型增长的轨迹表明,如果仅依赖二进制硬件的改进,功耗需求将难以为继 5。大规模的节能(如1所声称)将降低AI系统的总拥有成本,尤其是在电力和冷却是主要开支的数据中心 4。更重要的是,它可以使复杂的AI算法在功耗预算有限的边缘设备(如智能手机、自动驾驶汽车、工业传感器)上高效运行 1。这种向边缘AI的转变对数据隐私、延迟和离线功能具有重要意义。这也符合全球可持续发展目标,有可能减少快速增长的数字经济的整体能源足迹 5。

C. 信息密度:用更少资源处理更多信息

由于每个trit比一个bit携带更多信息(log2​(3)≈1.58 比特),三进制系统可以在给定数量的信号线或晶体管的情况下实现更高的数据吞吐量 4。

这可以减少芯片上的互连复杂性。如果每条线路可以携带更多信息,那么实现相同数据传输速率可能需要更少的线路,或者现有线路可以携带更多数据 7。互连是现代芯片中功耗和延迟的重要来源。

缓解互连瓶颈是一个关键且常被低估的优势。在现代复杂的SoC中,芯片不同部分(核心、内存、外设)之间的通信对性能的限制可能与逻辑门的速度一样大。每条线路更高的信息密度直接解决了这个问题。随着芯片集成数十亿晶体管而变得越来越复杂,互连(导线)的长度和密度急剧增加 18。这些互连具有固有的电阻和电容,导致信号延迟(延迟)和功耗(RC延迟、动态功耗)18。如果三进制逻辑允许在相同信息带宽下减少30-40%的有效信号线,这可能转化为更短的平均导线长度、更少的拥塞以及芯片内数据移动功耗的降低。这一优势与逻辑元件中晶体管数量减少和功耗节省相结合,从而实现更全面的高效芯片设计。

D. 增强的AI能力:处理不确定性和复杂逻辑

三进制逻辑中的“中间状态”(例如,在{-1, 0, +1}系统中的“0”)允许更自然地在硬件层面表示超越简单“真”或“假”的概念。这可以被解释为“未知”、“中性”、“不相关”或概率性的中间状态,从而实现一些人所称的“灰度思维” 1。

这对于本身处理不确定性、概率或多值决策的AI应用尤其重要。例如:

  • 自动驾驶:将“制动概率”直接映射到中间状态,可能减少决策延迟(例如,从50毫秒降至34毫秒)并减少错误的紧急制动事件 1。
  • 医疗诊断:表示细致入微的诊断状态 1。
  • 神经网络:第三种状态可以有效地表示抑制信号、零权重或既非强正也非强负的激活状态,从而可能实现更高效的神经网络 7。

华为的方法强调对此类三态逻辑的直接硬件支持,避免了二进制系统为实现类似细致逻辑所需的软件模拟开销 1。

三进制硬件固有地表示第三种状态的能力,可以简化AI软件和算法的设计,不仅带来更快的执行速度,还可能产生更易于解释和更鲁棒的AI模型。这超越了单纯的量化提速,实现了AI推理能力的质的提升。当前在二进制硬件上运行的AI模型通常使用复杂的软件技术(例如,用浮点数表示概率,特定的激活函数)来表示和处理不确定性或多值状态。如果硬件本身能够本地处理第三种逻辑状态,那么一部分软件复杂性可能会被卸载到硬件,从而简化AI模型的代码并可能减少计算步骤。例如,在神经网络中,如果神经元的输出可以在硬件逻辑层面直接是{激活、抑制、中性},那么与必须从二进制表示中编码和解码这些状态相比,它可能会导致更高效的稀疏计算或不同类型的网络动态。这也可能使某些AI模型的内部工作更加透明或“可调试”,如果硬件状态能更直观地映射到AI算法中的概念状态。

V. 目的与影响:“用途与意义”

A. 聚焦AI:革新人工智能芯片设计

华为三进制技术最主要且最受强调的应用领域是人工智能(AI)芯片设计 1。该技术旨在直接解决当前AI半导体固有的显著功耗问题 2。AI工作负载,特别是训练大型模型和运行复杂推理任务,是众所周知的耗电大户。

华为将此视为一个关键的差异化因素。1指出,华为在AI专利申请方面一直很活跃(在模型量化、数据处理、算力调度等领域拥有26项专利),并将三进制技术视为构建其AI生态“壁垒”的“关键节点”。这表明三进制芯片可能成为华为未来昇腾(Ascend)AI处理器或全新AI产品线的硬件基础。

华为在AI芯片基础三进制逻辑上的投入,而非仅仅依赖于二进制系统上的高级软件或架构优化,表明其致力于打造一个深度集成且差异化的AI技术栈的长远战略。这可能为他们带来独特的每瓦性能优势,而这些优势是仍在二进制轨道上的竞争对手难以通过简单的基础硬件更改来复制的。许多当前的AI芯片优化(例如,专门的二进制架构、模型压缩)是渐进式的,或者可以被多个参与者采用。而在硬件门级转向三进制逻辑 1 则是一项根本性的范式转变。如果华为成功掌握了用于AI的三进制芯片设计和制造,其AI软件、编译器和模型可以协同设计以利用这些独特的硬件能力(例如,用于不确定性的第三状态、更高效的算术运算)。这将创建一个协同的硬件-软件生态系统 1 ,可能提供卓越的AI性能和效率,形成一个其他公司难以迅速逾越的竞争“护城河”。

B. 拓展视野:在边缘计算、物联网和数据中心的应用

  • 边缘计算与低功耗AI: 行业分析师预测,三进制逻辑可能首先在边缘计算和低功耗AI芯片领域得到应用 1。显著的节能优势对于电池容量或散热条件有限的设备(例如智能手机、可穿戴设备、自动驾驶汽车传感器、工业机器人)极具吸引力。
  • 物联网 (IoT): 低功耗和潜在的更小芯片尺寸使三进制逻辑适用于大量的物联网设备 1。一些研究还表明,三进制逻辑可用于增强物联网安全性和身份验证 13。
  • 数据中心: 虽然边缘AI是一个强有力的候选领域,但节能效益对于大型数据中心也同样引人注目,这些数据中心配备了耗电巨大的强大GPU和AI加速器 4。即使每个芯片的功耗降低一个不大的百分比,在数据中心规模上也能带来巨大的运营成本节省和环境足迹减少。27甚至声称,华为手机电池续航增加了56分钟,数据中心每年可节省超过10万度电。

三进制计算优势(功耗、密度)的多功能性意味着它并非单一应用技术。如果初步障碍得以克服,其从微型物联网节点到大型数据中心的整个计算连续统一体中的潜在部署表明,它可能成为一种普遍的架构元素,而不仅仅是针对某种特定类型AI的利基解决方案。功耗效率是一项普遍需求,尽管原因各不相同(边缘设备的电池寿命,数据中心的运营成本)。计算密度的增加(每平方毫米的计算能力)对于空间受限的边缘设备很有价值,同时也允许数据中心拥有更强大的单个节点。处理不确定性的能力 1 对于在边缘(例如,机器人的本地决策)和云端(例如,复杂数据分析)执行的AI任务都至关重要。因此,成功的三进制芯片可以找到多样化的市场,从而增加所需大量研发投资的潜在回报。

C. 战略维度:华为的创新驱动与技术自主之路

  • 并非“弯道超车”而是“开辟新维度”: 1明确指出,三进制逻辑的目标并非“弯道超车”(一个通过寻找捷径或急转弯来超越竞争对手的常用语),而是“为芯片设计开辟新维度”。这暗示了一种创新战略,旨在改变游戏规则或创造新的竞争舞台,而不仅仅是在现有二进制范式内追赶。
  • 颠覆性潜力与竞争优势: 如果成功实施并商业化,三进制逻辑可能会颠覆当前的计算范式,并在AI和半导体领域为华为提供显著的竞争优势 5。这是一项“大胆的创新之举” 3。
  • 生态系统建设: 华为旨在围绕其技术构建生态系统 1。三进制计算可能成为一个独特的、以华为为中心的硬件/软件生态系统的基石,尤其是在AI领域。27提到鸿蒙(HarmonyOS)生态系统正在适配。

华为对三进制计算的追求是更广泛地缘政治战略的体现,其中半导体等基础领域的技术领先地位被视为对国家影响力和经济安全至关重要。这是一场高风险的赌博,旨在按照自己的方式重新定义技术领域的一部分,如果华为取得突破,可能会迫使其他全球参与者做出反应或适应。中美科技竞争凸显了依赖外国核心技术的战略脆弱性 5。掌握像三进制这样的新型计算范式不仅可以解决华为在某些芯片方面的直接供应链问题,还可以将其(并延伸至中国)定位为下一代技术的领导者。诸如“开辟新维度” 1、“范式转变” 5 等措辞表明,其雄心在于制定新标准或影响计算的未来方向,而不仅仅是现有标准的消费者或适配者。成功可能会将一些技术主导权东移,挑战西方公司在半导体创新领域的长期主导地位 27。

VI. 探索前进之路:挑战与未来展望

A. 克服技术与制造障碍

  • 硬件复杂性: 设计和制造可靠的三态物理组件(晶体管、逻辑门)本质上比二进制组件更为复杂 5。二进制逻辑受益于“开”与“关”的简单性。
  • 信号完整性与抗噪性: 与区分两个电平相比,可靠地区分三个不同的电压或电流电平需要在电路中进行更精确的控制并具有更高的抗噪性 7。这对于高速运行和密集集成是一个主要问题。
  • 制造工艺与良率: 当前的半导体制造工艺高度优化用于二进制CMOS电路 7。为三进制逻辑调整这些工艺,或开发新工艺,同时保持高良率和成本效益是一项重大挑战 5。一些先前的三进制设计一直受到诸如“0”(中间)状态下功耗高和运行速度慢等问题的困扰 19。
  • 材料科学: 虽然华为的专利可能针对硅材料,但在规模上制造稳定、快速切换的三态器件仍然是一个根本性挑战。

三进制芯片的技术可行性取决于解决“数字世界中的模拟问题”。虽然逻辑是离散的(三种状态),但底层的物理现象(电压、电流)是模拟的。确保数十亿晶体管在三种状态之间实现清晰、稳定和快速的转换,同时最大限度地减少泄漏并具有高噪声容限,这是一项深刻的工程挑战,历史上一直倾向于更简单的二进制方法。二进制晶体管主要作为开关工作,具有两个定义明确且相对分离的状态,提供了良好的噪声容限 10。三进制器件需要定义和维持三种不同的状态。这意味着状态之间的“间隙”更小,使它们更容易受到制造变化、温度波动和电噪声的影响 7。在不影响开关速度的情况下,在中间状态(通常是非零电压/电流)实现低静态功耗是困难的 19。三进制制造的成功将取决于器件物理学、针对三态操作的电路设计技术以及制造过程控制方面的突破。

B. 构建生态系统:软件、标准与行业采纳

  • 行业惯性: 全球整个计算生态系统——从硬件设计工具、编程语言、编译器、操作系统到算法和开发人员专业知识——绝大多数都针对二进制逻辑进行了优化 5。克服这种根深蒂固的惯性是一项艰巨的任务。
  • 软件与工具链: 需要一套全新的软件开发工具:
    • 三进制指令集架构 (ISAs) 7。
    • 能够将高级代码高效映射到三进制硬件的编译器。
    • 适用于三进制逻辑的调试器和性能分析工具。
    • 操作系统支持。
  • 教育与再培训: 工程师和程序员需要接受教育和再培训,以便为三进制系统进行思考和设计 7。
  • 市场接受度与标准化: 证明相对于成熟的二进制解决方案具有明显且令人信服的优势对于市场接受至关重要 5。缺乏三进制计算的行业标准也会阻碍其采用。

“先有鸡还是先有蛋”的问题是三进制推广的一个巨大障碍。没有引人注目的应用和软件,硬件就缺乏广泛采用的动力。没有广泛可用且价格合理的硬件,开发软件和应用的动力就不足。华为可能需要首先独自推动整个生态系统,这是一项成本高昂且风险极高的努力。开发者为现有且拥有用户基础的平台编写软件。硬件制造商为拥有软件生态系统和市场需求的芯片进行生产。打破这种循环需要像华为这样的主要参与者强力推动,同时开发硬件和基础软件层(也许首先针对其自身的AI模型等特定应用),以展示其价值。即便如此,要说服更广泛的行业在成熟的二进制生态系统之外投资于并行的三进制生态系统,也需要克服重大的经济和实践障碍。历史上不乏因缺乏生态系统支持而失败的技术上完善的架构(例如,英特尔的Itanium)。

C. 三进制的角色:新范式、利基解决方案还是演进步骤?

  • 并非立即取代二进制: 大多数分析师甚至华为本身(根据1)都认为,至少在可预见的未来,三进制逻辑并非旨在完全取代二进制计算。相反,它被视为计算范式的扩展 1。
  • 利基应用先行: 最可能的采用路径是在三进制独特优势最为突出的专业领域。这包括:
    • 用于边缘设备的低功耗AI芯片 1。
    • 受益于三态逻辑的特定类型AI算法。
    • 需要极高能效的物联网设备 1。
    • 可能用于增强安全性的加密功能 13。
  • 演进步骤还是桥梁技术?: 在更激进的变革(如广泛的量子计算)变得可行之前,三进制计算可能充当一个演进步骤,推动硅基技术的可能性边界。一些人也将其视为通往量子计算的概念桥梁,因为量子系统可以使用具有三种状态的“qutrits”(量子三进制位)7。

三进制计算的最终成功和角色很可能取决于特定应用领域内的成本效益分析。例如,如果它能够以与二进制相当或略高的成本,为关键的AI工作负载提供2倍的每瓦性能提升,那么它就能找到市场。其作为通往量子计算的“桥梁”角色,在直接技术传承方面更多是哲学意义而非实际意义。二进制生态系统过于庞大且针对通用计算进行了优化,难以轻易取代 5。然而,对于专业化、高价值的问题(如边缘AI推理),如果性能或效率的提升足以创造新的产品类别或显著改进现有产品,市场可能会容忍新架构的复杂性。“通往量子的桥梁”这一想法 7 之所以有趣,是因为它使设计人员熟悉了多态逻辑。然而,量子计算的运作原理(叠加、纠缠)与经典三进制逻辑根本不同。硬件和算法不能直接转换。

表3: 三进制计算的潜在优势与挑战

类别优势挑战
信息处理更高的信息密度 (每个trit约1.58比特) 7信号完整性要求高,对噪声更敏感 7
硬件实现理论上可减少晶体管数量 (约30%) 1制造工艺复杂,三态器件可靠性、良率是难点 5
能效显著降低功耗 (可能低至二进制的33%) 1中间态(如0V)的静态功耗控制 19
算术运算平衡三进制简化某些运算 (如带符号数处理) 9逻辑门设计更复杂 7
AI应用硬件原生支持三态逻辑,利于处理不确定性 1现有AI算法和模型多基于二进制优化
生态系统为特定应用(如低功耗AI)开辟新途径 1行业惯性巨大,缺乏成熟的软件、工具链和标准 5
成本芯片面积缩小可能降低单颗芯片成本 1初期研发、制造和生态系统建设成本高昂 5

VII. 更广阔的非二进制领域

A. 创新背景:北京大学的碳纳米管三进制芯片

北京大学的研究人员(通常与北京邮电大学合作)在三进制计算领域也取得了重大进展,但他们使用的是一种不同的材料基础:碳纳米管(CNTs)18。他们的方法涉及新颖的碳纳米管晶体管设计,例如源控晶体管(SGTs),这些晶体管可以可靠地在三种不同的电流状态之间切换,从而构成三进制逻辑电路的基础 18。通过将源电极延伸到沟道中,形成可控的p-n同质结,从而实现这三种状态 18。

基于碳纳米管的三进制芯片同样有望带来诸如计算速度更快(约为硅基二进制芯片的1.5倍)、功耗更低以及数据密度更高等优势 20。它们在图像识别等AI任务中已展现出高准确率 20。

尽管碳纳米管在理论上具有优越的特性(例如,载流子迁移率、导热系数 20),但与成熟的硅技术相比,它们在制造可扩展性和集成密度方面面临重大挑战 20。

中国国内同时进行硅基三进制逻辑(华为)和碳纳米管三进制逻辑(北京大学)的开发,突显了国家在探索多样化途径以突破当前半导体限制(尤其是在AI领域)方面的战略重点。这些并非相互排斥的努力,而是对非二进制计算在风险/回报/上市时间谱系上不同点的互补探索。这两项举措都旨在克服二进制硅在AI和其他要求苛刻的应用中的局限性 5。华为的方法(其专利可能基于硅)利用了现有的制造优势,但推动了硅逻辑的边界 1。这可以被视为一项中期战略。北京大学的碳纳米管研究更具基础性,探索新材料,如果制造挑战得以解决,这些材料可能会带来更长期、可能更具颠覆性的性能飞跃 20。这种双轨并行(演进的硅适应和革命性的新材料)的方式,使中国在关键的半导体领域的技术赌注多样化。

B. 简要比较:其他用于增强AI计算效率的方法

  • 低比特量化 (Low-Bit Quantization): 该技术降低AI模型中使用的数字(权重和激活值)的精度(例如,从32位浮点数降至8位整数,甚至在软件中实现2位/三进制表示)。这减少了内存占用和计算成本,并且可以在现有的二进制硬件(包括FPGA)上实现 36。TerEffic是一种用于三进制量化大语言模型 (LLM) 的FPGA架构 36。无矩阵乘法 (MatMul-free) 的LLM使用三进制权重矩阵 37。
  • 神经形态计算 (Neuromorphic Computing): 这涉及设计模仿人脑结构和功能的芯片,通常是事件驱动并使用脉冲神经网络。英特尔的Loihi 2就是一个例子,它可以支持低精度算术,包括用于高效LLM推理的三进制权重 7。
  • 多值逻辑存储 (Intel 3D XPoint): 虽然它探索了用于存储的多电平单元,但核心寻址和逻辑仍然是二进制的 1。这与改变基本计算逻辑不同。
  • 低精度浮点数 (NVIDIA FP8/FP4): NVIDIA GPU支持低精度浮点格式以加速二进制硬件上的AI计算,但这仍属于二进制范畴 1。
  • 小芯片 (Chiplets): 将系统分解为更小的专用裸片(小芯片),这些裸片可以组合起来,提供了设计灵活性,并且可以集成不同的技术,但除非小芯片本身是三进制的,否则它不会从本质上改变这些小芯片上逻辑的二进制特性 38。

与许多当前主要在现有二进制硬件的软件、模型或数据表示层面运行的AI效率技术相比,华为的硬件级三进制逻辑是一项更根本的架构转变。它的目标是改变计算的基础,而不仅仅是在二进制基础上优化操作。量化 36、低精度格式 1,甚至一些神经形态方法 37,最终都在根本上是二进制的晶体管和门上执行。它们模拟或近似多值概念。华为的专利 1 描述了构建逻辑门本身使其具有固有的三进制特性。这意味着“0, 1, -1”状态(理想情况下)是硬件操作的原生状态。这通过避免在二进制硬件上模拟三进制逻辑的开销,提供了实现更深层次、更内在效率增益的潜力,但也带来了改变基础硬件的更高风险和复杂性。

VIII. 总结分析与战略意义

A. 潜力综合

华为以专利CN119652311A为代表的三进制计算计划,是半导体创新领域一项大胆且可能具有变革性的举措。如果能够克服重大的技术和生态系统挑战,该技术有望在能效、计算密度和AI处理能力方面提供显著优势。它并非旨在立即取代无处不在的二进制计算,而是作为计算范式的一次强大扩展,可能首先在AI芯片、边缘计算和物联网等其优势最为突出的领域找到应用。

B. 对华为和中国的战略重要性

对华为而言,这是其在国产化大环境下实现技术自立、并在下一代AI硬件领域建立领先地位战略的关键组成部分。这是一项旨在开创新的竞争维度而非仅仅在现有领域追赶的长期投资。成功将显著增强华为在全球半导体产业中的整体技术实力和影响力。

C. 对半导体产业的长期考量

  • 进一步研究的催化剂: 华为的推动可能会激发全球对三进制及其他多值逻辑系统更广泛的兴趣和研发投入,从而可能加速超越二进制领域的创新。
  • 新标准与生态系统: 如果三进制计算获得关注,即使是在利基市场,也将需要开发新的行业标准、设计工具和软件生态系统,这为各方参与者同时带来挑战和机遇。
  • 地缘政治科技格局: 华为三进制项目的成功可能会改变部分技术平衡,表明在基础计算领域的重大创新也可能出现在传统西方主导的半导体强国之外。这可能会加剧技术竞争,但也可能为新型合作开辟途径。
  • 可行性问题: 通往商业化的道路充满障碍 3。计算历史表明,仅有技术上的优雅并不能保证市场成功;经济可行性、实施的简易性以及强大的生态系统支持同等重要。未来几年将是决定华为三进制愿景能否从专利转化为实用且有影响力的技术的关键时期。

D. 最终洞察

华为的三进制计算探索是一项高风险、高回报的冒险,它集中体现了当前全球半导体产业的动态:对AI性能的强烈需求、核心技术的国家战略利益,以及在现有范式极限之外对“下一个技术突破口”的不懈追求。其结果将成为未来计算架构和技术领导地位趋势的重要风向标。

引用的著作
  1. 重磅!华为公布新芯片技术! - 激光与红外, 访问时间为 五月 7, 2025, http://www.laser-infrared.com/home.php?s=/Index/msg_detail/id/13272/cateid/25
  2. 華為申請「三進制邏輯閘電路」專利解決AI晶片耗能問題 - DIGITIMES, 访问时间为 五月 7, 2025, https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?id=0000718685_OKU5PN5W990B0I4XTU5UP
  3. Huawei’s Ternary Logic Patent Could Revolutionize AI Chip Design …, 访问时间为 五月 7, 2025, https://www.indexbox.io/blog/huaweis-ternary-logic-patent-a-game-changer-for-ai-chips/
  4. Huawei patents ‘ternary logic’ to develop energy-efficient AI chips, 访问时间为 五月 7, 2025, https://www.huaweicentral.com/huawei-patents-ternary-logic-to-develop-energy-efficient-ai-chips/
  5. Huawei’s Ternary Logic Breakthrough: A Game-Changer or Just Hype? | AI News, 访问时间为 五月 7, 2025, https://opentools.ai/news/huaweis-ternary-logic-breakthrough-a-game-changer-or-just-hype
  6. Huawei’s Patent Application for Ternary Logic Gate Circuits, 访问时间为 五月 7, 2025, https://meta-quantum.today/?p=7719
  7. Huawei patents ‘ternary logic’ to develop energy-efficient AI chips - YouTube, 访问时间为 五月 7, 2025, https://www.youtube.com/watch?v=teCJh0D65sI
  8. Ternary computer - Wikipedia, 访问时间为 五月 7, 2025, https://en.wikipedia.org/wiki/Ternary_computer
  9. ELI5: How ternary computing works? : r/explainlikeimfive - Reddit, 访问时间为 五月 7, 2025, https://www.reddit.com/r/explainlikeimfive/comments/meogo/eli5_how_ternary_computing_works/
  10. 平衡三进制- 维基百科,自由的百科全书, 访问时间为 五月 7, 2025, https://zh.wikipedia.org/zh-cn/%E5%B9%B3%E8%A1%A1%E4%B8%89%E9%80%B2%E4%BD%8D
  11. A balanced Memristor-CMOS ternary logic family and its application - arXiv, 访问时间为 五月 7, 2025, https://arxiv.org/pdf/2309.01615
  12. Can Ternary Computing Improve Information Assurance? - MDPI, 访问时间为 五月 7, 2025, https://www.mdpi.com/2410-387X/2/1/6
  13. CN101887356A - 制造三进制计算机的一种方法 - Google Patents, 访问时间为 五月 7, 2025, https://patents.google.com/patent/CN101887356A/zh
  14. 平衡三进制 - OI Wiki, 访问时间为 五月 7, 2025, https://oi-wiki.org/math/balanced-ternary/
  15. Ternary Logic Documentation | PDF | Field Effect Transistor | Cmos - Scribd, 访问时间为 五月 7, 2025, https://www.scribd.com/document/576853902/Ternary-logic-documentation
  16. Design and Application of Memristive Balanced Ternary Univariate Logic Circuit - PMC, 访问时间为 五月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10609331/
  17. High-performance ternary logic circuits and neural networks based …, 访问时间为 五月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11721562/
  18. (PDF) Ternary Toward Binary: Circuit-Level Implementation of Ternary Logic Using Depletion-Mode and Conventional MOSFETs - ResearchGate, 访问时间为 五月 7, 2025, https://www.researchgate.net/publication/387482899_Ternary_Toward_Binary_Circuit-Level_Implementation_of_Ternary_Logic_Using_Depletion-Mode_and_Conventional_MOSFETs
  19. Are Carbon Nanotube Chips the Future? China’s Ternary Logic Breakthrough Explained, 访问时间为 五月 7, 2025, https://www.1950.ai/post/are-carbon-nanotube-chips-the-future-china-s-ternary-logic-breakthrough-explained
  20. Pushing Boundaries: China’s First Carbon AI Chip Promises a Computing Revolution, 访问时间为 五月 7, 2025, https://opentools.ai/news/pushing-boundaries-chinas-first-carbon-ai-chip-promises-a-computing-revolution
  21. High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors - PubMed, 访问时间为 五月 7, 2025, https://pubmed.ncbi.nlm.nih.gov/39792666/
  22. Chinese scientists develop world’s first carbon-based AI chip, 访问时间为 五月 7, 2025, https://advancedcarbonscouncil.org/blogpost/2151389/508873/Chinese-scientists-develop-world-s-first-carbon-based-AI-chip
  23. 三进制计算机- 维基百科,自由的百科全书, 访问时间为 五月 7, 2025, https://zh.wikipedia.org/zh-cn/%E4%B8%89%E9%80%B2%E4%BD%8D%E9%9B%BB%E8%85%A6
  24. Key theories and technologies and implementation mechanism of parallel computing for ternary optical computer - PMC, 访问时间为 五月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10166507/
  25. Structural design of memory system for Ternary Optical Computer - PMC - PubMed Central, 访问时间为 五月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11870373/
  26. Huawei’s ternary chip emerged, setting off an “Eastern Revolution” in the silicon-based world. - YouTube, 访问时间为 五月 7, 2025, https://www.youtube.com/watch?v=T3iwpT8sXck
  27. High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors - ResearchGate, 访问时间为 五月 7, 2025, https://www.researchgate.net/publication/387905674_High-performance_ternary_logic_circuits_and_neural_networks_based_on_carbon_nanotube_source-gating_transistors
  28. Huawei’s Turnary Chip: A New Era of Computing Podcast - YouTube, 访问时间为 五月 7, 2025, https://www.youtube.com/watch?v=dqXAhDO7Kcc
  29. The Limits of Chip Export Controls in Meeting the China Challenge - CSIS, 访问时间为 五月 7, 2025, https://www.csis.org/analysis/limits-chip-export-controls-meeting-china-challenge
  30. China’s Carbon AI Chip Breakthrough - OpenTools’ Newsletter, 访问时间为 五月 7, 2025, https://newsletter.opentools.ai/p/china-s-carbon-ai-chip-breakthrough
  31. TSMC’s Compliance Dilemma: Navigating the AI Chip Export Minefield in China - AInvest, 访问时间为 五月 7, 2025, https://www.ainvest.com/news/tsmc-compliance-dilemma-navigating-ai-chip-export-minefield-china-2504/
  32. 北大团队成功研发世界首个碳纳米管张量处理器芯片, 访问时间为 五月 7, 2025, https://www.edu.cn/ke_yan_yu_fa_zhan/gao_xiao_cheng_guo/cheng_guo_zhan_shi/202407/t20240723_2625617.shtml
  33. Chinese scientists develop world’s first carbon-based AI chip | The Express Tribune, 访问时间为 五月 7, 2025, https://tribune.com.pk/story/2533072/chinese-scientists-develop-worlds-first-carbon-based-ai-chip
  34. Chinese scientists revolutionize artificial intelligence and create the first carbon microchip: faster and more efficient - Advanced Carbons Council, 访问时间为 五月 7, 2025, https://advancedcarbonscouncil.org/blogpost/2151389/508733/Chinese-scientists-revolutionize-artificial-intelligence-and-create-the-first-carbon-microchip-faster-and-more-efficient?tag=Advanced+Carbons+Council
  35. TerEffic: Highly Efficient Ternary LLM Inference on FPGA - arXiv, 访问时间为 五月 7, 2025, https://arxiv.org/html/2502.16473v2
  36. Neuromorphic Principles for Efficient Large Language Models on Intel Loihi 2 - arXiv, 访问时间为 五月 7, 2025, https://arxiv.org/html/2503.18002v2
  37. Programme | DATE 2024, 访问时间为 五月 7, 2025, https://date24.date-conference.com/programme
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头虎

一分也是爱,打赏博主成就未来!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值