目录
1. numpy
常见的几种导入方式:
第三种的话,以后使用numpy的内容,就不需要numpy. 的操作,直接用就行
建议使用第二种导入方式
2. numpy数组和list列表
numpy 数组上的数学操作:
- 例如:将列表的每一个元素+1
- 例如:将列表a,b对应的元素相加
zip 是一个打包命令,这里可以将a,b对应的位置组成一个数对,然后再相加
上面运用列表的操作是非常麻烦的,但是运用numpy的话会非常简单
3. numpy 产生数组
这里数组和列表不同的是:
列表元素类型可以是不一样的
数组元素类型 dtype 是一样的
3.1 从列表产生数组
3.2 生成全0或者全1数组
生成全 0 数组:zeros
默认给的都是浮点数的形式 0.
生成全 1 数组:ones
默认给的都是浮点数的形式 1.
通过dtype 更改默认的元素类型
3.3 fill 将数组设置为指定值
如果传入参数的元素类型不一样,会按照已有的类型(原来的类型)进行转换
如果想让上面的fill(2.5)成立,需要astype进行类型转换
3.4 生成特殊数组
生成整数序列:arange,遵循左闭右开
生成等差数列:linspace(开始,终点,多少个元素),这个不是左闭右开,终点也包括
这个写法可能有点奇怪,但是也能理解,要不然就和arange一样了
默认是浮点型,因为个数的存在极大可能会产生小数
生成随机数:random.rand()
这样生成的是10个0-1直接的随机数,不包括1
随机生成10个整数,左闭右开
4. 数组类型
查看数组类型:type
numpy.narray----->numpy当中的n维的数组类型
查看数组中元素的类型:dtype
5. 数组形状
shape 查看数组的形状
6. 数组元素的数目
size 查看数组元素的个数
7. 数组的维度
ndim 查看数组的维度