Schur Complement(舒尔补)

文章介绍了舒尔补的概念,它是矩阵理论中的一个重要工具,特别是在处理分块矩阵时。舒尔补允许我们简化矩阵操作,如求逆和解线性方程组。对于可逆的子矩阵,文章提供了如何计算舒尔补的公式,并展示了如何使用舒尔补来解分块矩阵方程组的两种方法。此外,还讨论了舒尔补在SLAM(SimultaneousLocalizationAndMapping)等领域的潜在应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Schur Complement(舒尔补)

SLAM基础——舒尔补介绍

1、定义

定义 M = [ A B C D ] M=\begin{bmatrix}A&B\\C&D\end{bmatrix} M=[ACBD],若 A A A可逆,则 Δ A = D − C A − 1 B \Delta A=D-CA^{-1}B ΔA=DCA1B称为 A A A关于 M M M的舒尔补;

D D D可逆,则 Δ D = A − B D − 1 C \Delta D=A-BD^{-1}C ΔD=ABD1C称为 D D D关于 M M M的舒尔补。

2、性质

M = [ A B C D ] = [ I 0 C A − 1 I ] [ A 0 0 Δ A ] [ I A − 1 B 0 I ] M − 1 = [ A B C D ] − 1 = [ I − A − 1 B 0 I ] [ A − 1 0 0 Δ A − 1 ] [ I 0 − C A − 1 I ] = [ A − 1 + A − 1 B Δ A − 1 C A − 1 − A − 1 B Δ A − 1 − Δ A − 1 C A − 1 Δ A − 1 ] M=\begin{bmatrix}A&B\\C&D\end{bmatrix}=\begin{bmatrix}I&0\\CA^{-1}&I\end{bmatrix}\begin{bmatrix}A&0\\0&\Delta A\end{bmatrix}\begin{bmatrix}I&A^{-1}B\\0&I\end{bmatrix}\\ M^{-1}=\begin{bmatrix}A&B\\C&D\end{bmatrix}^{-1}=\begin{bmatrix}I&-A^{-1}B\\0&I\end{bmatrix}\begin{bmatrix}A^{-1}&0\\0&\Delta A^{-1}\end{bmatrix}\begin{bmatrix}I&0\\-CA^{-1}&I\end{bmatrix}\\=\begin{bmatrix}A^{-1}+A^{-1}B\Delta A^{-1}CA^{-1}&-A^{-1}B\Delta A^{-1}\\-\Delta A^{-1}CA^{-1}&\Delta A^{-1}\end{bmatrix} M=[ACBD]=[ICA10I][A00ΔA][I0A1BI]M1=[ACBD]1=[I0A1BI][A100ΔA1][ICA10I]=[A1+A1BΔA1CA1ΔA1CA1A1BΔA1ΔA1]

M = [ A B C D ] = [ I B D − 1 0 I ] [ Δ D 0 0 D ] [ I 0 D − 1 C I ] M − 1 = [ A B C D ] − 1 = [ I 0 − D − 1 C I ] [ Δ D − 1 0 0 D − 1 ] [ I − B D − 1 0 I ] = [ Δ D − 1 − Δ D − 1 B D − 1 − D − 1 C Δ D − 1 D − 1 + D − 1 C Δ D − 1 B D − 1 ] M=\begin{bmatrix}A&B\\C&D\end{bmatrix}=\begin{bmatrix}I&BD^{-1}\\0&I\end{bmatrix}\begin{bmatrix}\Delta D&0\\0&D\end{bmatrix}\begin{bmatrix}I&0\\D^{-1}C&I\end{bmatrix}\\ M^{-1}=\begin{bmatrix}A&B\\C&D\end{bmatrix}^{-1}=\begin{bmatrix}I&0\\-D^{-1}C&I\end{bmatrix}\begin{bmatrix}\Delta D^{-1}&0\\0&D^{-1}\end{bmatrix}\begin{bmatrix}I&-BD^{-1}\\0&I\end{bmatrix}\\=\begin{bmatrix}\Delta D^{-1}&-\Delta D^{-1}BD^{-1}\\-D^{-1}C\Delta D^{-1}&D^{-1}+D^{-1}C\Delta D^{-1}BD^{-1}\end{bmatrix} M=[ACBD]=[I0BD1I][ΔD00D][ID1C0I]M1=[ACBD]1=[ID1C0I][ΔD100D1][I0BD1I]=[ΔD1D1CΔD1ΔD1BD1D1+D1CΔD1BD1]

Δ A = D − C A − 1 B \Delta A=D-CA^{-1}B ΔA=DCA1B, Δ D = A − B D − 1 C \Delta D=A-BD^{-1}C ΔD=ABD1C

3、应用

(1)解方程组

[ A B C D ] [ x 1 x 2 ] = [ b 1 b 2 ] \begin{bmatrix}A&B\\C&D\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}b_1\\b_2\end{bmatrix} [ACBD][x1x2]=[b1b2]

法1: D − 1 , Δ D − 1 D^{-1},\Delta D^{-1} D1,ΔD1存在

[ x 1 x 2 ] = [ Δ D − 1 ( b 1 − B D − 1 b 2 ) D − 1 ( b 2 − C x 1 ) ] \begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}\Delta D^{-1}(b_1-BD^{-1}b_2)\\D^{-1}(b_2-Cx_1)\end{bmatrix} [x1x2]=[ΔD1(b1BD1b2)D1(b2Cx1)]

法2: A − 1 , Δ A − 1 A^{-1},\Delta A^{-1} A1,ΔA1存在

[ x 1 x 2 ] = [ A − 1 ( b 1 − B x 2 ) Δ A − 1 ( b 2 − C A − 1 b 1 ) ] \begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}A^{-1}(b_1-Bx_2)\\\Delta A^{-1}(b_2-CA^{-1}b_1)\end{bmatrix} [x1x2]=[A1(b1Bx2)ΔA1(b2CA1b1)]

(2)联合概率分解

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值