Schur Complement(舒尔补)
1、定义
定义 M = [ A B C D ] M=\begin{bmatrix}A&B\\C&D\end{bmatrix} M=[ACBD],若 A A A可逆,则 Δ A = D − C A − 1 B \Delta A=D-CA^{-1}B ΔA=D−CA−1B称为 A A A关于 M M M的舒尔补;
若 D D D可逆,则 Δ D = A − B D − 1 C \Delta D=A-BD^{-1}C ΔD=A−BD−1C称为 D D D关于 M M M的舒尔补。
2、性质
M = [ A B C D ] = [ I 0 C A − 1 I ] [ A 0 0 Δ A ] [ I A − 1 B 0 I ] M − 1 = [ A B C D ] − 1 = [ I − A − 1 B 0 I ] [ A − 1 0 0 Δ A − 1 ] [ I 0 − C A − 1 I ] = [ A − 1 + A − 1 B Δ A − 1 C A − 1 − A − 1 B Δ A − 1 − Δ A − 1 C A − 1 Δ A − 1 ] M=\begin{bmatrix}A&B\\C&D\end{bmatrix}=\begin{bmatrix}I&0\\CA^{-1}&I\end{bmatrix}\begin{bmatrix}A&0\\0&\Delta A\end{bmatrix}\begin{bmatrix}I&A^{-1}B\\0&I\end{bmatrix}\\ M^{-1}=\begin{bmatrix}A&B\\C&D\end{bmatrix}^{-1}=\begin{bmatrix}I&-A^{-1}B\\0&I\end{bmatrix}\begin{bmatrix}A^{-1}&0\\0&\Delta A^{-1}\end{bmatrix}\begin{bmatrix}I&0\\-CA^{-1}&I\end{bmatrix}\\=\begin{bmatrix}A^{-1}+A^{-1}B\Delta A^{-1}CA^{-1}&-A^{-1}B\Delta A^{-1}\\-\Delta A^{-1}CA^{-1}&\Delta A^{-1}\end{bmatrix} M=[ACBD]=[ICA−10I][A00ΔA][I0A−1BI]M−1=[ACBD]−1=[I0−A−1BI][A−100ΔA−1][I−CA−10I]=[A−1+A−1BΔA−1CA−1−ΔA−1CA−1−A−1BΔA−1ΔA−1]
M = [ A B C D ] = [ I B D − 1 0 I ] [ Δ D 0 0 D ] [ I 0 D − 1 C I ] M − 1 = [ A B C D ] − 1 = [ I 0 − D − 1 C I ] [ Δ D − 1 0 0 D − 1 ] [ I − B D − 1 0 I ] = [ Δ D − 1 − Δ D − 1 B D − 1 − D − 1 C Δ D − 1 D − 1 + D − 1 C Δ D − 1 B D − 1 ] M=\begin{bmatrix}A&B\\C&D\end{bmatrix}=\begin{bmatrix}I&BD^{-1}\\0&I\end{bmatrix}\begin{bmatrix}\Delta D&0\\0&D\end{bmatrix}\begin{bmatrix}I&0\\D^{-1}C&I\end{bmatrix}\\ M^{-1}=\begin{bmatrix}A&B\\C&D\end{bmatrix}^{-1}=\begin{bmatrix}I&0\\-D^{-1}C&I\end{bmatrix}\begin{bmatrix}\Delta D^{-1}&0\\0&D^{-1}\end{bmatrix}\begin{bmatrix}I&-BD^{-1}\\0&I\end{bmatrix}\\=\begin{bmatrix}\Delta D^{-1}&-\Delta D^{-1}BD^{-1}\\-D^{-1}C\Delta D^{-1}&D^{-1}+D^{-1}C\Delta D^{-1}BD^{-1}\end{bmatrix} M=[ACBD]=[I0BD−1I][ΔD00D][ID−1C0I]M−1=[ACBD]−1=[I−D−1C0I][ΔD−100D−1][I0−BD−1I]=[ΔD−1−D−1CΔD−1−ΔD−1BD−1D−1+D−1CΔD−1BD−1]
Δ A = D − C A − 1 B \Delta A=D-CA^{-1}B ΔA=D−CA−1B, Δ D = A − B D − 1 C \Delta D=A-BD^{-1}C ΔD=A−BD−1C
3、应用
(1)解方程组
[ A B C D ] [ x 1 x 2 ] = [ b 1 b 2 ] \begin{bmatrix}A&B\\C&D\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}b_1\\b_2\end{bmatrix} [ACBD][x1x2]=[b1b2]
法1: D − 1 , Δ D − 1 D^{-1},\Delta D^{-1} D−1,ΔD−1存在
[ x 1 x 2 ] = [ Δ D − 1 ( b 1 − B D − 1 b 2 ) D − 1 ( b 2 − C x 1 ) ] \begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}\Delta D^{-1}(b_1-BD^{-1}b_2)\\D^{-1}(b_2-Cx_1)\end{bmatrix} [x1x2]=[ΔD−1(b1−BD−1b2)D−1(b2−Cx1)]
法2: A − 1 , Δ A − 1 A^{-1},\Delta A^{-1} A−1,ΔA−1存在
[ x 1 x 2 ] = [ A − 1 ( b 1 − B x 2 ) Δ A − 1 ( b 2 − C A − 1 b 1 ) ] \begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}A^{-1}(b_1-Bx_2)\\\Delta A^{-1}(b_2-CA^{-1}b_1)\end{bmatrix} [x1x2]=[A−1(b1−Bx2)ΔA−1(b2−CA−1b1)]
(2)联合概率分解
