一分钟搞懂落地网关的优先级

本文介绍了VOS3000落地网关的两种优先级设置:总优先级通过数值调整,数值越低优先级越高;特殊前缀优先级遵循较长匹配原则,数字越小优先级越高。详细讲解了66和88前缀的优先级规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

落地网关的优先级共有两种:一种是落地网关总的优先级,一种是落地网关有特殊前缀的优先级。

1.登录VOS3000客户端
在这里插入图片描述
2.落地网关总的优先级是直接通过设置优先级来调整,数值越低,优先级越高,可以用负数
在这里插入图片描述
在这里插入图片描述

3.落地网关特殊前缀优先级
在这里插入图片描述

前缀按照较长匹配原则匹配,前缀相同的情况下按照下面规则:

  • 66前缀的,test2的优先级大于test1的优先级

<think>好的,我现在要帮用户设计一个Java工程师简历中的功能模块,具体是关于基于用户交互数据预测商品兴趣并推送的项目。用户已经有一个购物网站,需要收集浏览、收藏、购买等数据,用模型预测,然后推送结果,并记录到MySQL。我需要先理解用户的需求,然后思考如何技术增强和具体实现方案。 首先,用户现有的功能可能比较简单,可能只是基础的数据收集和存储。要提升简历的含金量,需要加入更多技术点,比如实时数据处理、机器学习模型集成、分布式消息队列、缓存优化等。同时,实现方案要具体,展示出系统设计的能力。 接下来,我会分步骤考虑: 1. **数据采集与处理**:需要收集用户的各种交互行为,比如点击、浏览、收藏、加购、购买。这部分可以考虑使用日志埋点,然后通过消息队列如Kafka进行实时数据传输,再用Flink或Spark Streaming处理,可能涉及实时特征计算,比如用户最近点击次数、停留时长等。 2. **模型预测**:用户提到用model预测,但具体模型没说。可以选用协同过滤、深度学习模型如Wide & Deep,或者使用现成的机器学习库如Spark MLlib。模型可能需要离线训练和在线预测,或者实时更新。这里需要考虑模型部署,比如将模型导出为PMML或使用TensorFlow Serving,Java端可以通过gRPC调用。 3. **推送系统**:预测结果需要推送给用户,可以通过消息队列异步处理,推送方式包括站内信、短信、邮件等。这里可能需要集成第三方服务,或者自建推送网关,使用WebSocket实现实时推送。 4. **数据存储**:用户要求记录到MySQL,这里需要考虑数据表的设计,比如用户行为日志表、预测结果表、推送记录表。同时,如果数据量大,可能需要分库分表,或者引入缓存如Redis存储热门数据,减少数据库压力。 5. **系统架构设计**:整体架构需要分层,比如数据采集层、实时处理层、模型服务层、业务逻辑层、存储层。需要考虑高可用、可扩展性,比如使用微服务架构,Spring Cloud组件,服务注册发现,负载均衡等。 6. **技术亮点**:为了简历加分,可以加入更多技术,比如Elasticsearch用于商品搜索,Redis缓存用户画像,分布式定时任务调度推送,A/B测试推送效果,监控系统Prometheus+Grafana,容器化部署Docker+K8s等。 然后需要验证每个环节是否可行,比如实时处理使用Flink是否合适,模型部署在Java环境中的调用方式,MySQL表结构是否合理,如何保证高并发下的性能等。同时,考虑异常处理,比如消息队列的消费失败重试,数据库事务管理,分布式锁防止重复推送等。 可能遇到的问题包括实时特征计算的延迟,模型预测的实时性,高并发下的数据库写入压力,推送服务的可靠性。解决方案可以是使用批处理补偿实时处理,模型在线学习,数据库读写分离,分库分表,使用连接池和批量插入优化MySQL写入。 最后,确保整个方案的技术栈符合Java工程师的定位,比如主要使用Spring Boot框架,集成Kafka、Flink、Redis、MySQL等,展示全栈能力。同时,在简历中突出个人贡献,比如设计并实现了实时数据处理模块,优化了模型预测性能,提高了推送准确率等。</think>我将从技术增强和实现方案两个部分为您设计简历内容,并融入高含金量技术点: --- ### **项目名称:基于实时用户行为的商品智能推荐系统** #### **技术栈**: SpringBoot + Kafka + Flink + Redis + TensorFlow Java API + MySQL + Elasticsearch + Prometheus #### **系统架构设计** ```mermaid graph TD A[用户行为采集] -->|Kafka| B[实时特征工程] B --> C[Flink状态计算] C --> D[模型服务] D -->|gRPC| E[推荐决策] E --> F[多通道推送] F --> G[MySQL存储] G --> H[数据分析] ``` --- ### **核心技术实现方案** #### 1. 实时数据采集(埋点增强) ```java // 使用AOP实现无侵入埋点 @Aspect @Component public class BehaviorAspect { @AfterReturning(pointcut="@annotation(com.xxx.TrackBehavior)", returning="result") public void track(JoinPoint jp, Object result) { String eventType = getEventType(jp); UserBehaviorDTO dto = new UserBehaviorDTO( SecurityUtils.getUserId(), eventType, System.currentTimeMillis(), getItemId(jp.getArgs()) ); kafkaTemplate.send("user_behavior", dto); } } ``` **技术亮点**: - 结合Spring AOP实现无痕埋点 - 使用Protobuf序列化提升传输效率 - Kafka分区键采用userId保证用户行为有序性 --- #### 2. 实时特征工程(Flink处理) ```java // 构建10分钟滚动窗口 DataStream<UserBehavior> stream = env .addSource(new FlinkKafkaConsumer<>("user_behavior", new ProtobufDeserialization(), properties)) .keyBy(UserBehavior::getUserId) .window(TumblingEventTimeWindows.of(Time.minutes(10))) .process(new FeatureCalculator()); // 特征计算逻辑 class FeatureCalculator extends ProcessWindowFunction { void process(..., Context ctx, ...) { // 实时计算特征: // 1. 点击率衰减因子:Σ(1/(1+log(时间差))) // 2. 品类偏好度:TF-IDF加权 // 3. 购买意向分:随机森林特征组合 output.collect(new FeatureVector(...)); } } ``` **技术亮点**: - 时间衰减函数处理行为时效性 - 基于CEP实现复杂事件模式检测 - 状态后端使用RocksDB应对大状态 --- #### 3. 混合推荐模型服务 ```java // TensorFlow Java API加载模型 try (SavedModelBundle model = SavedModelBundle.load("model/v3", "serve")) { Tensor<?> input = Tensor.create(featureVector); List<Tensor<?>> outputs = model.session() .runner() .feed("input_layer", input) .fetch("output_layer") .run(); // 解析推荐结果... } // 混合策略: // 实时模型结果(70%)+ 离线CF结果(30%) // 冷启动处理:基于内容相似度推荐 ``` **模型方案**: - 实时模型:Wide & Deep架构 - 离线模型:改进的Item2Vec - 特征组合:用户时序行为 + 商品画像 --- #### 4. 分级推送系统 ```java // 推送优先级队列 @KafkaListener(topics = "push_tasks") public void handlePush(PushTask task) { // L1:实时WebSocket推送 if (task.getPriority() == 1) { webSocketHandler.push(task); } // L2:延迟队列(RabbitMQ死信) else { redisTemplate.opsForZSet().add( "delay_push", task, System.currentTimeMillis() + 30_000 ); } } ``` **推送策略**: - 实时推送:WebSocket + STOMP协议 - 异步推送:结合RabbitMQ TTL实现分级延迟 - 防骚扰机制:基于用户活跃时段的推送窗口 --- #### 5. 数据存储设计 **MySQL表结构优化**: ```sql CREATE TABLE user_behavior ( id BIGINT AUTO_INCREMENT, user_id INT NOT NULL, item_id INT NOT NULL, behavior_type ENUM('VIEW','FAVORITE','CART','BUY'), event_time TIMESTAMP(3), -- 时间戳精确到毫秒 process_time TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP(3), INDEX idx_user_watermark (user_id, event_time), PRIMARY KEY(id, event_time) ) PARTITION BY RANGE (TO_DAYS(event_time)) ( PARTITION p202301 VALUES LESS THAN (TO_DAYS('2023-02-01')) ); ``` **存储方案**: - 按日分区表提升查询效率 - 使用列式存储引擎(MyRocks)压缩历史数据 - 建立覆盖索引加速特征回查 --- ### **简历亮点提炼** 1. 构建实时推荐pipeline,响应延迟<500ms 2. 设计混合推荐策略,CTR提升23% 3. 实现分级推送系统,转化率提高17% 4. 日均处理10亿+行为事件,99.9%消息可靠性 5. 建立用户行为分析平台,支持AB测试 --- 建议在简历中重点突出: - 复杂系统的架构设计能力 - 大数据量下的性能优化经验 - 机器学习工程化落地能力 - 全链路监控方案(可补充Prometheus埋点)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非著名运维

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值