最小二乘法理论
代数表示法
多元线性方程:
f
(
x
)
=
w
1
x
1
+
w
2
x
2
+
.
.
.
w
d
x
d
+
b
f(x) = w_1x_1 + w_2x_2 + ... w_dx_d +b
f(x)=w1x1+w2x2+...wdxd+b
令$ w=(w_1,w_2,…w_d), x = (x_1,x_2,…x_d)$,则(1)式可写为
f
(
x
)
=
w
T
x
+
b
f(x) = w^Tx+b
f(x)=wTx+b
注:w是weight的缩写,代表自变量的权重。
优化目标
S
S
E
(
误
差
平
方
和
)
=
∑
i
=
1
m
(
f
(
x
i
)
−
y
i
)
2
=
E
(
w
,
b
)
SSE(误差平方和) = \sum_{i=1}^{m}(f(x_i)-y_i)^2=E(w,b)
SSE(误差平方和)=i=1∑m(f(xi)−yi)2=E(w,b)
通过偏导为0求得最终结果的最小二乘法求解过程为:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\partial…
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\partial…
于是可得
w
=
∑
i
=
1
m
y
i
(
x
i
−
x
ˉ
)
∑
i
=
1
m
x
i
2
−
1
m
(
∑
i
=
1
m
x
i
)
2
(5)
w = \frac{\sum^m_{i=1}y_i(x_i-\bar{x}) }{\sum^m_{i=1}x^2_i-\frac{1}{m}(\sum^m_{i=1}x_i)^2 } \tag{5}
w=∑i=1mxi2−m1(∑i=1mxi)2∑i=1myi(xi−xˉ)(5)
b = 1 m ∑ i = 1 m ( y i − w x i ) (6) b = \frac{1}{m}\sum^m_{i=1}(y_i-wx_i)\tag{6} b=m1i=1∑m(yi−wxi)(6)
其中, x ˉ = 1 m ∑ i = 1 m x i , x i 为 x \bar{x}=\frac{1}{m}\sum_{i=1}^mx_i,x_i为x xˉ=m1∑i=1mxi,xi为x的均值,并且 ( x i , y i ) (x_i,y_i) (xi,yi)代表二维空间中的点。
矩阵表示法
多元线性回归方程
f
(
x
)
=
w
1
x
1
+
w
2
x
2
+
.
.
.
+
w
d
x
d
+
b
(7)
f(x) = w_1x_1+w_2x_2+...+w_dx_d+b\tag{7}
f(x)=w1x1+w2x2+...+wdxd+b(7)
令
w
^
=
(
w
1
,
w
2
,
.
.
.
,
w
d
,
b
)
,
x
^
=
(
x
1
,
x
2
,
.
.
.
x
d
,
1
)
\hat{w}=(w_1,w_2,...,w_d,b),\hat{x}=(x_1,x_2,...x_d,1)
w^=(w1,w2,...,wd,b),x^=(x1,x2,...xd,1)
- w ^ \hat w w^:方程系数所组成的向量,并且我们将自变量系数和截距放到了一个向量中,此处 w ^ \hat w w^就相当于前例中的a、b组成的向量(a,b);
- x ^ \hat x x^:方程自变量和1共同组成的向量;
于是,方程可以表示为
f
(
x
)
=
w
^
∗
x
^
T
(8)
f(x)=\hat{w}*\hat{x}^T \tag{8}
f(x)=w^∗x^T(8)
另外,我们将所有自变量的值放在一个矩阵中,并且和此前A矩阵类似,为了捕捉截距,添加一列全为1的列在矩阵的末尾,设总共有m组取值,则
X = [ x 11 x 12 . . . x 1 d 1 x 21 x 22 . . . x 2 d 1 . . . . . . . . . . . . 1 x m 1 x m 2 . . . x m d 1 ] X = \left [\begin{array}{cccc} x_{11} &x_{12} &... &x_{1d} &1 \\ x_{21} &x_{22} &... &x_{2d} &1 \\ ... &... &... &... &1 \\ x_{m1} &x_{m2} &... &x_{md} &1 \\ \end{array}\right] X=⎣⎢⎢⎡x11x21...xm1x12x22...xm2............x1dx2d...xmd1111⎦⎥⎥⎤
对应到前例中的A矩阵,A矩阵就是拥有一个自变量、两个取值的X矩阵。令y为因变量的取值,则有
y = [ y 1 y 2 . . . y m ] y = \left [\begin{array}{cccc} y_1 \\ y_2 \\ . \\ . \\ . \\ y_m \\ \end{array}\right] y=⎣⎢⎢⎢⎢⎢⎢⎡y1y2...ym⎦⎥⎥⎥⎥⎥⎥⎤
此时,SSE可表示为:
S S E = ∣ ∣ y − X w ^ T ∣ ∣ 2 2 = ( y − X w ^ T ) T ( y − X w ^ T ) = E ( w ^ ) SSE = ||y - X\hat w^T||_2^2 = (y - X\hat w^T)^T(y - X\hat w^T) = E(\hat w) SSE=∣∣y−Xw^T∣∣22=(y−Xw^T)T(y−Xw^T)=E(w^)
根据最小二乘法的求解过程,令
E
(
w
^
)
E(\hat w)
E(w^)对
w
^
\hat w
w^求导方程取值为0,有
KaTeX parse error: No such environment: equation at position 887: …数,有如下规则: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \\\frac{\parti…
进一步可得
X T X w ^ T = X T y X^TX\hat w^T = X^Ty XTXw^T=XTy
要使得此式有解,等价于 X T X X^TX XTX(也被称为矩阵的交叉乘积);crossprod是否存在逆矩阵,若存在,则可解出
w ^ T = ( X T X ) − 1 X T y \hat w ^T = (X^TX)^{-1}X^Ty w^T=(XTX)−1XTy