最小二乘法(理论)

最小二乘法理论

代数表示法

多元线性方程:
f ( x ) = w 1 x 1 + w 2 x 2 + . . . w d x d + b f(x) = w_1x_1 + w_2x_2 + ... w_dx_d +b f(x)=w1x1+w2x2+...wdxd+b
令$ w=(w_1,w_2,…w_d), x = (x_1,x_2,…x_d)$,则(1)式可写为 f ( x ) = w T x + b f(x) = w^Tx+b f(x)=wTx+b

注:w是weight的缩写,代表自变量的权重。

优化目标
S S E ( 误 差 平 方 和 ) = ∑ i = 1 m ( f ( x i ) − y i ) 2 = E ( w , b ) SSE(误差平方和) = \sum_{i=1}^{m}(f(x_i)-y_i)^2=E(w,b) SSE=i=1m(f(xi)yi)2=E(w,b)
通过偏导为0求得最终结果的最小二乘法求解过程为:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\partial…

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\partial…
于是可得
w = ∑ i = 1 m y i ( x i − x ˉ ) ∑ i = 1 m x i 2 − 1 m ( ∑ i = 1 m x i ) 2 (5) w = \frac{\sum^m_{i=1}y_i(x_i-\bar{x}) }{\sum^m_{i=1}x^2_i-\frac{1}{m}(\sum^m_{i=1}x_i)^2 } \tag{5} w=i=1mxi2m1(i=1mxi)2i=1myi(xixˉ)(5)

b = 1 m ∑ i = 1 m ( y i − w x i ) (6) b = \frac{1}{m}\sum^m_{i=1}(y_i-wx_i)\tag{6} b=m1i=1m(yiwxi)(6)

其中, x ˉ = 1 m ∑ i = 1 m x i , x i 为 x \bar{x}=\frac{1}{m}\sum_{i=1}^mx_i,x_i为x xˉ=m1i=1mxi,xix的均值,并且 ( x i , y i ) (x_i,y_i) (xi,yi)代表二维空间中的点。

矩阵表示法

多元线性回归方程
f ( x ) = w 1 x 1 + w 2 x 2 + . . . + w d x d + b (7) f(x) = w_1x_1+w_2x_2+...+w_dx_d+b\tag{7} f(x)=w1x1+w2x2+...+wdxd+b(7)
w ^ = ( w 1 , w 2 , . . . , w d , b ) , x ^ = ( x 1 , x 2 , . . . x d , 1 ) \hat{w}=(w_1,w_2,...,w_d,b),\hat{x}=(x_1,x_2,...x_d,1) w^=(w1,w2,...,wd,b),x^=(x1,x2,...xd,1)

  • w ^ \hat w w^:方程系数所组成的向量,并且我们将自变量系数和截距放到了一个向量中,此处 w ^ \hat w w^就相当于前例中的a、b组成的向量(a,b);
  • x ^ \hat x x^:方程自变量和1共同组成的向量;

于是,方程可以表示为
f ( x ) = w ^ ∗ x ^ T (8) f(x)=\hat{w}*\hat{x}^T \tag{8} f(x)=w^x^T(8)
另外,我们将所有自变量的值放在一个矩阵中,并且和此前A矩阵类似,为了捕捉截距,添加一列全为1的列在矩阵的末尾,设总共有m组取值,则

X = [ x 11 x 12 . . . x 1 d 1 x 21 x 22 . . . x 2 d 1 . . . . . . . . . . . . 1 x m 1 x m 2 . . . x m d 1 ] X = \left [\begin{array}{cccc} x_{11} &x_{12} &... &x_{1d} &1 \\ x_{21} &x_{22} &... &x_{2d} &1 \\ ... &... &... &... &1 \\ x_{m1} &x_{m2} &... &x_{md} &1 \\ \end{array}\right] X=x11x21...xm1x12x22...xm2............x1dx2d...xmd1111

对应到前例中的A矩阵,A矩阵就是拥有一个自变量、两个取值的X矩阵。令y为因变量的取值,则有

y = [ y 1 y 2 . . . y m ] y = \left [\begin{array}{cccc} y_1 \\ y_2 \\ . \\ . \\ . \\ y_m \\ \end{array}\right] y=y1y2...ym

此时,SSE可表示为:

S S E = ∣ ∣ y − X w ^ T ∣ ∣ 2 2 = ( y − X w ^ T ) T ( y − X w ^ T ) = E ( w ^ ) SSE = ||y - X\hat w^T||_2^2 = (y - X\hat w^T)^T(y - X\hat w^T) = E(\hat w) SSE=yXw^T22=(yXw^T)T(yXw^T)=E(w^)

根据最小二乘法的求解过程,令 E ( w ^ ) E(\hat w) E(w^) w ^ \hat w w^求导方程取值为0,有
KaTeX parse error: No such environment: equation at position 887: …数,有如下规则: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \\\frac{\parti…
进一步可得

X T X w ^ T = X T y X^TX\hat w^T = X^Ty XTXw^T=XTy

要使得此式有解,等价于 X T X X^TX XTX(也被称为矩阵的交叉乘积);crossprod是否存在逆矩阵,若存在,则可解出

w ^ T = ( X T X ) − 1 X T y \hat w ^T = (X^TX)^{-1}X^Ty w^T=(XTX)1XTy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1100dp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值